
The fine-grained complexity of multi-dimensional
ordering properties
Haozhe An1 !

University of Maryland, College Park, USA

Mohit Gurumukhani1 !

Cornell University, USA

Russell Impagliazzo !

UC San Diego, USA

Michael Jaber1 !

University of Texas at Austin, USA

Marvin Künnemann !

Institute for Theoretical Studies, ETH Zurich, Switzerland

Maria Paula Parga Nina1 !

UC San Diego, USA

Abstract
We define a class of problems whose input is an n-sized set of d-dimensional vectors, and where
the problem is first-order definable using comparisons between coordinates. This class captures a
wide variety of tasks, such as complex types of orthogonal range search, model-checking first-order
properties on geometric intersection graphs, and elementary questions on multidimensional data like
verifying Pareto optimality of a choice of data points.

Focusing on constant dimension d, we show that any such k-quantifier, d-dimensional problem
is solvable in O(nk−1 logd−1 n) time. Furthermore, this algorithm is conditionally tight up to
subpolynomial factors: we show that assuming the 3-uniform hyperclique hypothesis, there is a
k-quantifier, (3k − 3)-dimensional problem in this class that requires time Ω(nk−1−o(1)).

Towards identifying a single representative problem for this class, we study the existence of
complete problems for the 3-quantifier setting (since 2-quantifier problems can already be solved in
near-linear time O(n logd−1 n), and k-quantifier problems with k > 3 reduce to the 3-quantifier case).
We define a problem Vector Concatenated Non-Domination VCNDd (Given three sets of vectors
X,Y and Z of dimension d, d and 2d, respectively, is there an x ∈ X and a y ∈ Y so that their
concatenation x ◦ y is not dominated by any z ∈ Z, where vector u is dominated by vector v if
ui ≤ vi for each coordinate 1 ≤ i ≤ d), and determine it as the “unique” candidate to be complete
for this class (under fine-grained assumptions).

2012 ACM Subject Classification Theory of computation → Complexity theory and logic; Theory
of computation → Problems, reductions and completeness; Theory of computation → Verification
by model checking

Keywords and phrases Fine-grained complexity, First-order logic, Orthogonal vectors

Funding Russell Impagliazzo: Work supported by the Simons Foundation and NSF grant CCF-
1909634.
Marvin Künnemann: Research supported by Dr. Max Rössler, by the Walter Haefner Foundation,
and by the ETH Zürich Foundation. Part of this research was performed while the author was
employed at MPI Informatics.

Acknowledgements We would like to thank Rex Lei, Jiawei Gao, and Victor Vianu for helpful
comments and discussion.

1 This research was conducted while the authors were undergraduates at UC San Diego.

mailto:haozhe@umd.edu
mailto:mgurumuk@cs.cornell.edu
mailto:russell@eng.ucsd.edu
mailto:mjjaber@cs.utexas.edu
mailto:marvin.kuennemann@eth-its.ethz.ch
mailto:mpargani@ucsd.edu

2 The fine-grained complexity of multi-dimensional ordering properties

1 Introduction

Algorithmic problems based on comparing elements according to a total ordering relation are
as fundamental as they are useful. Any introductory algorithms textbook starts with sorting
and other comparison-based problems. For higher dimensional data, problems involving
comparisons for multiple components, such as range queries, are equally fundamental in
computational geometry. In databases, queries need to handle data with many fields that
can be compared (beyond other relations on the data), such as listing all employees who are
not managers of another employee, with seniority in one range and salary in another.

In this paper, we give a general, systematic study of the complexity of multi-dimensional
comparison problems. We define complexity classes capturing the notion of “multi-dimensional
comparison problems”, as appropriate in geometry and in databases, with the classes PTOd
representing geometric problems in d dimensional data, and TOd representing problems that
combine ordering and other relations for such data, as would be found in databases. We then
identify the maximum complexity of problems in these classes under standard assumptions
in fine-grained complexity, and relate the classes to each other and other studied complexity
classes. For many subclasses, we find natural complete or hard problems where progress on
better algorithms for these problems would result in better algorithms for the entire subclass.

While our results are varied, with upper bounds, conditional lower bounds and complete-
ness results, a consistent theme emerges. Our classes are intermediate between two previously
studied classes of logically defined problems, first-order in the sparse representation (e.g.,
graph problems in adjacency list format) and first-order in the dense representation (e.g,
graph problems in adjacency matrix format). While orderings are dense relations, with
quadratically many pairs for which they hold, they are a special case that can be represented
succinctly, by giving an array of ranks for each element. What emerges in our results is that
multi-dimensional ordering problems are very tightly connected to first-order in the sparse
representation, and not directly connected to the dense representation. Thus, while they
give substantially different settings, we give many senses in which sparse relations can be
coded in terms of orders, and where orderings can be reduced to sparse relations.

1.1 A class of geometric ordering problems: PTOk,d

As an example for multi-dimensional comparison problems, consider 2D orthogonal range
searching: given a set of 2-dimensional data points D, answer Boolean queries of the form

∃x ∈ D : x ∈ [`1, u1]× [`2, u2],

where [`1, u1]× [`2, u2] is a given orthogonal range. Note that here, we may without loss of
generality replace each point’s coordinate in dimension d by its rank among the coordinates
in dimension d of all points in D. Typical variants include to report, count or optimize over
all elements in the query range. A long line of research starting in the 70s, including [41, 46,
23, 11, 44, 19], gives fast algorithms for such tasks, e.g., an algorithm to preprocess D such
as to answer queries in time O(log logn) using space O(n log logn), see [19]. Many more
complex algorithmic tasks can be solved using orthogonal range techniques, see [26, 8] for an
overview.

Also more complex tasks than mere orthogonal range searching arise naturally: In a set
of d-dimensional data points D, consider a feature (or property) F of the data points that
can be described as being contained in an orthogonal range [`1, u1]× · · · × [`d, ud]. Given a
family F of such features, there are several natural questions to ask:

H. An, M. Gurumukhani, R. Impagliazzo, M. Jaber, M. Künnemann, and M. Nina 3

decide if all features are present in the dataset:
∀F = [`1, u1]× · · · × [`d, ud] ∈ F ∃x ∈ D : x ∈ F
decide if some data point displays all features:
∃x ∈ D ∀F = [`1, u1]× · · · × [`d, ud] ∈ F : x ∈ F
decide if two different features are equivalent on D:
∃F1 ∈ F ∃F2 ∈ F ∀x ∈ D : F1 6= F2 ∧ (x ∈ F1 ↔ x ∈ F2).

Some of these questions can be quickly answered using orthogonal range reporting queries,
for others it seems that already the output size of single such query might pose a possibly
unnecessary bottleneck. Furthermore, some features might be comparison-based, but more
complex than a simple orthogonal range, e.g.,2

x ∈ F (`1, u1, . . . , `d, ud) ⇐⇒
(x1 ∈ [`1, u1]→ (x2 ∈ [`2, u2])) ∧ (x1 /∈ [`1, u1]→ (x3, . . . , xd) ∈ [`3, u3]× · · · × [`d, ud])).

In such cases, it would not be immediate whether orthogonal range search techniques can be
used at all.

We formalize a notion of “multi-dimensional comparison problems” by introducing a class
of problems PTOk,d (for “purely total ordering property”) of model-checking a k-quantifier
first-order property on a relational structure with d total ordering relations (each succinctly
represented as a sorted list of objects) as well as unary relations (to enable comparison of
coordinates with constants). In particular, this class contains any property ψ of the form

ψ = Q1x
(1)Q2x

(2) . . . Qkx
(k) : φ(x(1), . . . , x(k)),

where Qi ∈ {∃,∀}, x(i) ranges over d-dimensional vectors (which we also call objects), and
φ is an arbitrary Boolean formula involving only comparisons of the form x

(a)
i ≤ x(b)

i with
1 ≤ a, b ≤ k (here, x(a)

i , x
(b)
i denotes the i-th dimension of x(a), x(b), respectively), as well as

comparisons with constants. We will refer to d as the dimension of a formula ψ ∈ PTOk,d.
For this paper throughout, we think of φ as fixed formula, and thus k, d are constants. See
Section 2.1 for further details.

The class PTOk,d includes all problems as mentioned above, but also tasks such as
verifying Pareto optimality of a given set of d-dimensional data points3, or given a set of
d-dimensional geometric objects, determine whether there are k distinct such objects whose
bounding boxes intersect.

We furthermore extend this class to TOk,d, where we allow, beyond d total ordering
relations, also arbitrary additional relations (represented explicitly). These two classes
encompass in particular the following types of problems:

Model-checking first-order properties of geometric intersection graphs: Presence of
an edge in an intersection graph of axis-parallel boxes can be decided using comparisons
of coordinates. Thus, any k-quantifier first-order property on such geometric intersection
graphs in Rd can be formulated as a problem in PTOk,d, such as finding k pair-wise
non-intersecting d-dimensional axis-parallel unit-cubes [42].4

2 The given expression could model the following feature: if a person is of working age (x1 ∈ [`1, u1]), use
criterion x2 ∈ [`2, u2], otherwise use (x3, . . . , xd) ∈ [`3, u3]× · · · × [`d, ud].

3 Recall that a set X is Pareto optimal if there are no distinct points x, x′ ∈ X such that x is coordinate-
wise at least as large as x′.

4 For even more involved types of algorithmic tasks beyond k-quantifier first-order properties, see, e.g., [20]
(All-Pairs Shortest Paths) or [25] (NP-hard problems).

4 The fine-grained complexity of multi-dimensional ordering properties

temporal logic: using a single total ordering relation, we may represent precedence in a
time domain. Thus, we may express temporal logical statements involving expressions
over future or past events in TOk,1.
relational databases with ordered types: in relational databases, we may use totally
ordered data types (salaries of employees, time events, rank in a sorted list, etc.) as
succinct representation to enable comparisons. In this context, studying the complexity
of a problem in TOk,d corresponds to studying the data complexity of a fixed query.

1.2 Our results
Let k ≥ 2. We show that any problem in PTOk,d involving n objects can be solved in
time O(nk−1 logd−1 n) which is Õ(nk−1) for any constant dimension d. We extend this
algorithm to run in time O(mk−1 logd−1 m) for sentences in TOk,d, where m denotes the sum
of the number of objects and the size of the additional relations, i.e., the number of tuples
contained in the relation. We show the matching conditional lower bound that there is some
sentence in PTOk,3k−3 that requires time Ω(nk−1−o(1)) under the 3-uniform hyperclique
hypothesis [40, 2, 15, 37] – this hypothesis postulates that nk±o(1) running time is essentially
best possible for finding cliques in hypergraphs. (See Section 2.2 for further details.)

Beyond these general upper and lower bounds, we also seek to identify hard or even
complete problems for this class. Such problems capture the full generality of these classes,
in the sense that finding a significantly improved algorithm for this problem would give an
improved algorithm for all problems in the class. We use the following fine-grained notion
of hardness/completeness: Formally, let P be a problem whose best known algorithm runs
in time TP (n) and let C be a class of problems whose best known algorithms runs in time
TC(n). We say P is hard for a class of problems C, if any TP (n)1−ε-time algorithm for P
with ε > 0 gives a TC(n)1−ε′-time algorithm for all problems in C for some ε′ > 0. We
say that P is complete for C, if it is hard for C and contained in C. In particular, if P is
complete for C, then P admits substantial improvements over time TP (n) if and only if all
problems in C admit substantial improvements over TC(n). We use fine grained reductions
to show such results. Refer to Section 2 for its formal definition.

We identify such problems for specific quantifier structures. In particular, we focus on
the 3-quantifier case, since all 2-quantifier O(1)-dimensional total order properties can be
solved in near-linear time Õ(n) (Theorem 3), and all k-quantifier properties with k > 3 can
be reduced to the 3-quantifier case via brute forcing (Corollary 5). Focusing on PTOk,d, we
obtain the following results (see Table 1):
1. For existentially quantified pure total ordering properties (denoted by PTO∃∃∃,d), we

give an Õ(n2ω/(ω+1)) = Õ(n1.407) time algorithm and identify the well-studied triangle
detection in sparse graphs as a complete problem5.

2. For the quantifier structure ∀∃∃, we also give an Õ(n2ω/(ω+1)) = Õ(n1.407) time algorithm
by showing that the problem of counting, for each edge in a sparse graph, the number
of triangles containing this edge is hard for the class PTO∀∃∃,d. Since we reduce to a
counting problem rather than a member of this class, we do not obtain a completeness
result, however.

3. For the quantifier structure ∃∀∃, we were unable to find a complete or hard problem.
Nevertheless, we give evidence that this quantifier structure does not contain a complete

5 Strictly speaking, we identify the following 3-dimensional problem (which is linear-time equivalent to
triangle detection in sparse graphs) as complete for PTO∃∃∃,d: ∃x, y, z : x1 = z1 ∧ x2 = y2 ∧ y3 = z3.

H. An, M. Gurumukhani, R. Impagliazzo, M. Jaber, M. Künnemann, and M. Nina 5

problem for PTOk,d by showing that all PTO∃∀∃,d problems have a Õ(n)-time nondeter-
ministic and co-nondeterministic algorithm. Since we also show a n2−o(1) SETH6-based
lower bound for PTO3,d when d→∞, this rules out existence of such a complete problem
using deterministic reductions under NSETH, a nondeterministic variant of SETH [17].
We also give a conditional lower bound of n2−o(1) under the Hitting Set conjecture.

4. Finally, for the seemingly most difficult quantifier structure of ∃∃∀, we show n2−o(1)-time
conditional lower bounds under SETH and the 3-uniform hyperclique hypothesis, and
identify the following complete problem for PTO∃∃∀,d, which we call Vector Concatenated
Non-Domination VCNDd: Given three sets of vectors X,Y and Z of dimension d, d and
2d, respectively, is there an x ∈ X and a y ∈ Y so that their concatenation x ◦ y is not
dominated by any z ∈ Z, where vector u is dominated by vector v if ui ≤ vi for each
coordinate 1 ≤ i ≤ d.

Note that this covers all quantifier structures for k = 3, as decidingQ1Q2Q3φ withQi ∈ {∃,∀}
is equivalent to deciding Q1 Q2 Q3 φ where ∀ = ∃,∃ = ∀ and φ is the negation of φ.

These results identify the VCNDd problem as the essentially only candidate (up to fine-
grained equivalence) to be complete for PTO3,d under NSETH: It is complete for ∃∃∀, and
all problems with a different 3-quantifier structure have either improved deterministic or
(co-)nondeterministic algorithms, and thus cannot be complete without major consequences
in fine-grained complexity. It remains a challenge to prove or disprove completeness of
VCNDd for PTO3,d (beyond its completeness for PTO∃∃∀,d).

Since the above results motivate VCNDd as a central problem for PTOk,d, we work
towards algorithmic improvements for this problem. In particular, we obtain an Õ(n2− 1

2d)-
time algorithm for VCND whenever vectors in X have dimension 2 and vectors in Y have
dimension d (or vice versa). Note that obtaining such an O(n2−ε(d)) time algorithm with
ε(d) > 0 for general VCNDd would refute the 3-uniform hyperclique hypothesis by our
conditional lower bound and completeness result.

Finally, we show that our algorithmic results extend to the class TOk,d (see Section 3
for details), while all hardness results trivially apply, since they are already proven for the
subclass PTOk,d. Generally speaking, this shows that the database setting (with additional
sparse relations) does not increase the fine-grained complexity compared to the geometric
setting of purely total ordering properties.

1.3 Previous work
This work continues a relatively new direction, fine-grained complexity of complexity classes.
Fine-grained complexity aims to not only qualitatively classify problems as “easy” or “hard”,
but (to the extent possible) pin-point their exact complexities. We now have a wide collection
of standard algorithmic problems where any significant improvements in algorithmic running
time would refute one or more conjectures about well-studied problems, such as the k-SUM
problem [27], All Pairs Shortest Paths [49, 3, 40], SAT [34, 45], or Orthogonal Vectors
[6, 14, 1, 12, 16, 43, 38, 9, 2, 13]. Recent work in fine-grained complexity has gone from
considering problems one at a time to following traditional complexity in considering classes
of problems. Fine-grained reductions often cut across the usual complexity classes (with
reductions from NP -complete problems to first-order properties, for example), but on the
other hand, fine-grained complexity distinguishes between problems with the same traditional

6 Strong Exponential Time Hypothesis (SETH) for CNF-SAT: For all ε > 0, there exists a k so that
k-CNF-SAT cannot be solved in time O(2n(1−ε)) [34].

6 The fine-grained complexity of multi-dimensional ordering properties

complexities (e.g., two different NP -complete problems might have very different properties in
fine-grained complexity). Nevertheless, there are now a number of classes of problems, grouped
by logical structure or common format, whose fine-grained complexity is at least partially
understood: dense first-order properties [48]; sparse first-order properties [17, 30, 15]; several
extensions of first-order [29]; and certain formats of dynamic programming problems [38, 28].

The most closely related previous work to our results are [48, 30]. Both of these papers
consider the class of first-order definable properties, the first for the dense case (where
each relation is given as a matrix, aka adjacency matrix format), and the second for the
sparse case (where the input is given as a list of tuples in the relations, e.g., for graphs,
adjacency list format). This class is natural both in terms of computational complexity,
where it is the uniform version of AC0 ([31]), and in database theory, because these are the
queries expressible in basic SQL [7]. First-order logic can also express many polynomial time
computable problems: Orthogonal Vectors, k-Orthogonal Vectors, k-Clique, k-Independent
Set, k-Dominating Set, etc. Not only were the likely complexities of the hardest problems
(as a function of number of quantifiers) given, but in the second paper, a natural complete
problem was identified, the Orthogonal Vectors problem (OV). The conclusion was that
there were substantial improvements possible in the worst-case complexity of model checking
for first-order properties if and only if the known algorithms for Orthogonal Vectors can be
substantially improved. Using a recent sub-polynomial improvement in OV algorithms by
[4, 21], they obtained a similar improvement in model checking for every first-order property.
[29] extends this work to related logics such as transitive closure logics, first-order logic on
totally ordered sets, and first-order logic with function symbols. They show that model
checking for first-order logic with a single total ordering is actually equivalent to that for
unordered structures under fine-grained reductions. In contrast, we show that for even two
orderings, the model checking problem becomes substantially harder, meaning we require
new techniques to characterize the complexity of problems on multi-dimensional data.

There is also work on classes of problems that are related in spirit, but do not form a well-
studied complexity class. V.-Williams and Williams [49] study problems related to shortest
paths in graphs, and shows that many are subcubic-time equivalent. Künnemann et al. [38]
study dynamic programming problems with a similar structure and give a unified treatment
of their fine-grained complexities. Gao [28] extends this class of dynamic programming
problems from lines to tree-like structures such as bounded treewidth graphs.

2 Preliminaries

The following notion of fine-grained reductions was introduced in [49].

I Definition 1 (Fine-grained reduction). Let (Π1, T1(m)) ≤FGR (Π2, T2(m)) denote that for
every ε > 0 there is a δ > 0 and a Turing reduction from Π1 to Π2 so that the time for the
reduction (not counting oracle calls) is O(T1(m)1−δ) and

∑
q(T2(|q|))1−ε = O(T1(m)1−δ),

where the sum is over all oracle calls q made by the reduction on an instance of size m.

In other words, if there is some ε > 0 such that problem Π2 is in TIME((T2(m))1−ε), then
problem Π1 is in TIME((T1(m))1−δ) for some δ > 0, i.e., if Π2 can be solved substantially
faster than T2 then Π1 can be solved substantially faster than T1. If both T1 and T2 are
Θ(m2), the reduction is called a subquadratic reduction. We say that Π1 and Π2 are
fine-grained equivalent if there is a fine-grained reduction from Π1 to Π2 and vice versa.

We use this notation not only on single problems but also on classes of problems. Let C1
and C2 be classes of problems. (C1, T1(m)) ≤FGR (C2, T2(m)) if for all problems Π1 ∈ C1
there is a Π2 ∈ C2 so that (Π1, T1(m)) fine-grained reduces to (Π2, T2(m)).

H. An, M. Gurumukhani, R. Impagliazzo, M. Jaber, M. Künnemann, and M. Nina 7

2.1 Details on PTOk,d and TOk,d

In this paper, we consider the fine-grained complexity of model checking problems definable
in first-order logic on structures with d binary relations x ≤i y, 1 ≤ i ≤ d, where each binary
relation is a total pre-order of the universe (i.e., transitive, reflexive, total, but not necessarily
anti-symmetric.)

Total orders. We use x ≤i y to represent the i’th relation in our family holding between
x and y. Such a relation is dense, holding for Θ(n2) pairs of elements. However, we can
represent such a representation succinctly, by giving an array which for each element specifies
its rank in a list sorted by the ordering relation (with some elements having the same rank,
if inequality holds in both directions). It is in this succinct format that ordering relations
are described for our problems.

Equivalently, we may represent all ordering relations by representing each object x as a
d-dimensional vector (x1, . . . , xd), where xi denotes the rank of x in the i’th ordering relation.
Thus, it is equivalent to write x ≤i y or xi ≤ yi, and we will switch between these two based
on which seems clearer for the given circumstance.

The vectors we get in this way are very special, in that the coordinates are always positive
integers from 1 to n. However, also problems defined about d dimensional vectors over any
totally ordered domain (such as R) fall into our setting. This is because we will still have
only n vectors in our setting from that domain and in O(n logn) time we can replace each
xi with its rank in the set of i’th coordinates of vectors.

Unary relations. We also allow unary relations, or, equivalently, comparisons to constants.
More precisely, any unary relation U is represented as a list of objects for which U holds.
Apart from allowing us to put objects into categories (sometimes called colored properties),
this enables us to express comparisons of coordinates with constants: To express whether
x ≤i γ for some constant γ, we introduce a unary relation symbol U≤γi that holds for all x
with xi ≤ γ. Thus from now on, it suffices to declare constants γ explicitly, and afterwards
we may express arbitrary comparisons like xi 6= γ or xi > γ. Note that since we always
consider fixed formulas ψ, each considered property will use O(1) constants for comparisons.

Definition of PTOk,d. We denote the class of purely total ordering model-checking problems
for first-order formulas in pre-orderings and unary relations specified as above where the
formula has d distinct ordering relations and k total occurrences of quantifiers by PTOk,d.
PTOk is the union of PTOk,d over all constants d. We can further divide PTOk into 2k
sub-classes based on the quantifier structure, so for example PTO∃∃∃ is the sub-class of
PTO3 where the model-checking problems are for formulas of the form ∃x∃y∃zΦ(x, y, z)
where Φ is quantifier-free. We let n be the size of the universe of the structure, which is also,
up to constant factors, the size in terms of O(logn)-bit words required to specify all total
pre-orderings and unary relations. Algorithm time for problems in PTO is thus measured in
terms of n. In this format, it is a constant time operation to evaluate whether any relation is
true or false for specified elements.

Definition of TOk,d. We generalize PTOk,d to the class TOk,d by also allowing the formula
and models to have any constant number of sparse relations of any constant arity. These are
specified as lists of tuples where the relation holds. Let the problem size be denoted by m,
which is equal to the sum of the number of elements n and the number of tuples.

8 The fine-grained complexity of multi-dimensional ordering properties

We assume all algorithms start with quasi-linear time preprocessing steps to create data
structures such as hash tables or binary search trees that allow fast determination (constant
time or logarithmic time) of whether a relation holds for given elements, and allows one to
list the tuples in a relation that contain a given element in at most poly-log time + poly-log
time times the number of such tuples.

On the difference. PTOk,d is a more “geometric” class of problems, and so it is interesting
when we can reduce combinatorial problems to this class. Therefore, we will focus on these
classes when giving conditional hardness results. TOk,d is closer to the type of problems
that might arise in applications such as database queries. Therefore, we will focus on TOk,d
when giving algorithms or other upper bounds on complexity. Since PTOk,d ⊆ TOk,d, lower
bounds for PTOk,d are stronger results, and upper bounds for TOk,d are stronger results.

Further examples of problems in PTOk,d To define further well-studied problems in
PTOk,d, we say that a vector u dominates a vector v if ui ≥ vi for all 1 ≤ i ≤ d, and denote
this by u ≥dom v. Furthermore, given a set of d-dimensional real vectors A, we say that A is
Pareto optimal if there are no distinct a, a′ ∈ A so that a is coordinate-wise at least as large
as a′.

Vector Domination Problem (see, e.g. [32, 18]): Given two sets of d-dimensional real
vectors A and B, are there two vectors u ∈ A and v ∈ B such that u ≥dom v?
In small dimensions, this problems turns out to be equivalent to the low-dimensional
Orthogonal Vectors problem by a recent result of Chan [18].
Pareto Optimality Verification (see, e.g. [33]): Given a set A of vectors, determine if A is
Pareto optimal.

From the definition, both problems are in PTO2,d. As we will see, they can be solved in
time O(n logd−1 n). For superconstant dimension d, [32, 18] give further improvements.

2.2 Conjectures from fine-grained complexity
We list the fine-grained hardness assumptions used in this paper. While some of these
assumptions imply others (or are implied by them), they might turn out to be very different:
It is conceivable, e.g., that SETH turns out to be false, while the Orthogonal Vectors
Conjecture might indeed hold. Hence, we aim to classify our conditional hardness results by
the weakest hypothesis that suffices.

Specifically, we use the following hypotheses:

SAT hypotheses

Strong Exponential Time Hypothesis (SETH) [34]: For all ε > 0, there exists a k such
that k-CNF-SAT cannot be solved in time O(2n(1−ε)).
Nondeterministic Strong Exponential Time Hypothesis (NSETH) [17]: For every ε > 0,
there exists a k so that k-TAUT is not in NTIME(2(1−ε)n), where k-TAUT is the language
of all k-DNF which are tautologies, i.e., always true.

OV hypotheses

The Orthogonal Vectors problem (OV) is defined as follows: Given sets A,B of vectors in
{0, 1}d, the task is to determine whether there exists an orthogonal pair a ∈ A, b ∈ B, i.e.,
the inner product

∑d
k=1 a[k] · b[k] is equal to 0. While this problem is clearly solvable in time

O(n2poly(d)), it conjectured that we cannot achieve strongly quadratic running time:

H. An, M. Gurumukhani, R. Impagliazzo, M. Jaber, M. Künnemann, and M. Nina 9

Low-dimension OV conjecture (LDOVC), or Strong OV conjecture: For all ε > 0, there
is a C so that there is no O(n2−ε) time algorithm for OV with dimension d = C logn.
This is implied by SETH by [34] and [47].
Moderate-dimension OV conjecture (MDOVC): For all ε > 0, there is no O(n2−εpoly(d))
time algorithm that solves OV with dimension d. This is trivially implied by LDOVC.
Sparse OV conjecture (SOVC): For all ε > 0, there is no O(m2−ε) time algorithm for OV
where m is the total Hamming weight of all the input vectors [30]. This is equivalent to
MDOVC [30].

Relevant for our work is also the correspondence of OV to model-checking first-order proper-
ties:

First-order property conjecture (FOPC) [30]: There exists an integer k ≥ 2 so that there
is a (k+ 1)-quantifier first-order property that cannot be decided in time O(mk−ε) for any
ε > 0 (here structures are over universe size n and a list of constant arity relations over
these structures is given. The total number of relations given is m). This is equivalent to
MDOVC [30].

Finally, we also use the following generalization of OV to a problem with conjectured
complexity nk±o(1): The k-Orthogonal Vectors (k-OV) problem asks to determine, given a set
A of vectors in {0, 1}d whether there are a1, . . . , ak ∈ A such that

∑d
j=1 a1[j] · · · ak[j] = 0.

Moderate-dimension k-OV conjecture: For all ε > 0, there is no O(nk−εpoly(d)) time
algorithm that solves k-OV with dimension d. This is implied by SETH [47].

Hitting Set hypothesis

The Hitting Set problem is defined as follows: Given two families of subsets over the same
universe U , is there a set in the first family that has non-empty intersection with each set
in the second family? Equivalently, given two sets A,B of vectors in {0, 1}d, determine
whether there is an element a ∈ A such that for all b ∈ B there is some k ∈ [d] such that
a[k] = b[k] = 1.

Hitting set conjecture: For all ε > 0, there is a C so that there is no O(n2−ε) time
algorithm for Hitting Set with dimension d = C logn. The Hitting Set conjecture implies
the Low-Dimension OV conjecture [5], but there are reasons to believe it is not implied
by SETH ([17]).

Hyperclique hypothesis

h-uniform k-HyperClique Hypothesis: Let k > h > 2 be integers. The h-uniform k-
HyperClique Hypothesis states that for no ε > 0, we can detect a k-clique in a h-uniform
hypergraph on n nodes in time O(nk−ε), see [40] for a detailed discussion of its plausibility
and [2, 40, 15, 37] for recent applications.

For all of these conjectures, complexity is measured in the word RAM model with O(logn)
bit words.

2.3 The VCND problem

We formally define the perhaps most important problem for PTOk,d.

10 The fine-grained complexity of multi-dimensional ordering properties

I Definition 2 (Vector Concatenated Non-Domination). Given a set X of d1-dimensional
vectors, a set Y of d2-dimensional vectors, and a set Z of (d1 + d2)-dimensional vectors, all
with entries in Z, we define the language (d1, d2)-Vector Concatenated Non-Domination to
be the decision problem asking if

∃x ∈ X∃y ∈ Y ∀z ∈ Z(x ◦ y 6≤dom z),

where x ◦ y ∈ Zd1+d2 denotes the concatenation of x and y. We denote by VCNDd the special
case of d1 = d2 = d.

We can view VCND as first constructing the set X ◦ Y = {x ◦ y | x ∈ X, y ∈ Y } and then
asking whether there is some z ∈ Z that dominates some element of X ◦ Y . There are other
operations which could replace concatenation, such as the coordinate-wise max operation
Max(X,Y).

2.4 Relationships to other classes
For fine-grained complexity, the representation of the input is significant. In considering the
complexity of dense first-order properties, we view the input as a matrix or tensor representing
each relation; for binary relations, this is the familiar adjacency matrix representation for
graphs. While the relations are not necessarily dense, the algorithms cannot assume or utilize
sparsity. The “sparse” version of the same properties represents the input relations as lists of
tuples where the relation holds, generalizing the adjacency list representation for graphs. The
input is not necessarily sparse, but the algorithm is allowed more time for denser instances,
so sparse instances are the most difficult ones. Total order relations are intermediate between
“dense” and “sparse” relations, because while they are actually dense, containing a quadratic
number of pairs, they can be succinctly represented by the sorted list. In particular, total
orders can be obtained as the transitive closure operation performed on the sparse “successor”
relation. So our hardness results also imply hardness for sparse first-order augmented by
transitive closures, a class considered in [29].

3 Technical overview

In this section, we give the main ideas for all of our results, see Table 1 for an overview. One
of our main results is an upper bound on model-checking sentences in PTOk,d and TOk,d.

I Theorem 3. There is an algorithm running in time O(n logd−1(n)) for model-checking a
two-quantifier formula Q1xQ2yϕ(x, y) with d ordering relations and unary predicates.

Specifically, we obtain this result using the following lemma, which we obtain by a
reduction to orthogonal range counting.

I Lemma 4. Given a formula ϕ(x, y) with d ordering relations and unary predicates and
two sets X, Y of vectors in Rd, there is an O(n logd−1(n)) time algorithm that returns an
array A indexed by each x ∈ X so that A[x] is the number of y ∈ Y such that ϕ(x, y) is true.

Combining the above theorem with exhaustive search over the first k−2 quantifiers yields

I Corollary 5. Model-checking formulas in PTOk,d is in TIME(nk−1 logd−1(n)).

If we have additional explicitly represented relations, more work is required. For such
cases, throughout the paper, we will always assume that these relations are sparse, i.e., the
total input size is m = O(n). In this case, we obtain the same asymptotic running time.

H. An, M. Gurumukhani, R. Impagliazzo, M. Jaber, M. Künnemann, and M. Nina 11

Quantifier structure 3 quantifiers k quantifiers, k > 3

. . .∃∃∀ (sym.: . . .∀∀∃) Õ(n2) n2−o(1) for d = 6 Õ(nk−1) nk−1−o(1) for d = 3k − 3
complete: VCNDd (3-unif. 3k − 3-HC, Thm. 15) (3-unif. HC, Thm. 15)
(Thm. 14) n2−o(1) for d→∞

(SETH, Thm. 16)
. . .∃∀∃ (sym.: . . .∀∃∀) Õ(n2) n2−o(1) for d→∞ Õ(nk−1)
complete: open (Hitting Set, Thm. 12)

Õ(n) Õ(nk−2) nk−2−o(1) for d = 2
(co-)nondet. (co-)nondet. (SETH, Thm. 13)

. . .∀∃∃ (sym.: . . .∃∀∀) Õ(n
2ω

ω+1) Õ(nk−
ω+3
ω+1)

complete: open = O(n1.41) = O(nk−1.59)
hard: ETC
(Thm. 9)
. . .∃∃∃ (sym.: . . .∀∀∀) Õ(n

2ω
ω+1) Õ(nk−

ω+3
ω+1)

complete: triangle det. = O(n1.41) = O(nk−1.59)
(Thm. 7)

Table 1 Our results for PTOk,d, where we assume that d is an arbitrarily large constant.

I Theorem 6. Model-checking formulas in TOk,d is in TIME(mk−1 logd−1(m)).

The idea is to reduce the problem to the purely totally ordered case by assuming that all
sparse relations are empty; using Lemma 4 for the 2-quantifier case, we can obtain for each
x the number of y satisfying the condition. We then repair these counts to the true values
by iterating over the additional sparse relations, similar to the baseline algorithm in [30].

We prove our baseline algorithms in Section 4. Note that in Section 3.4, we discuss a
lower bound proving these baseline algorithms to be conditionally optimal under fine-grained
hardness assumptions.

In the remainder of the section, we distinguish our results based on the quantifier structure.
Since any k-quantifier formula with k > 3 reduces to the 3-quantifier setting via brute force
over the first k − 3 quantifiers, we only regard 3-quantifier structures.

3.1 Quantifier structures ending in ∃∃∃
Recall that informally, we call a problem complete for a class if it is contained in the class
and model-checking any sentence in the class reduces to our problem. For sentences in
PTOk,d ending in ∃∃∃, we show that detecting triangles in a sparse graph is complete for
this class. By current running time bounds for the problem [10], we obtain a running time of
Õ(n2ω/(ω+1)) = Õ(n1.407...).

I Theorem 7. The triangle detection problem in sparse graphs is fine-grained equivalent to
a problem that is complete for model-checking ∃∃∃ formulas with only ordering relations and
unary relations.

More precisely, the following ordering property is shown to be complete: ∃x∃y∃z : x1 =
z1 ∧ x2 = y2 ∧ y3 = z3 which is easy to be seen equivalent to triangle detection in sparse
graphs.

Intuitively, we reduce to this problem as follows: Given a formula ∃x∃y∃zφ(x, y, z), we
can determine whether φ(x, y, z) holds once we know all comparisons between x, y, z in each
dimension i. A challenge here is to reduce comparisons like xi < yi to an equality check:
Similar to a trick used in [50], we do this by guessing the highest-order bit of divergence

12 The fine-grained complexity of multi-dimensional ordering properties

between xi and yi to obtain a “proof” only involving equalities; since we may assume that
1 ≤ xi, yi ≤ n (by working in rank space), there are only O(logn) choices for a single
comparison. The key observation is that the quantifier structure is sufficiently well behaved
to make this reduction work: we only need to guess these bits of divergence for O(d) many
comparisons and can express correctness of all proofs for comparisons between x and z using
equality on the first dimension, between x and y using the second dimension, and between y
and z using the third dimension. In total, this results in an admissible blow-up of logO(d) n.
We prove the result in Section 5.1.1.

We turn to the setting with additional sparse relations, i.e., formulas in TO∃∃∃,d. Here
we establish the triangle counting problem in sparse graphs as hard for the class. Since the
approach of [10] also gives a counting algorithm in the same running time as detection, we
establish the same algorithmic upper bound.

I Theorem 8. Every problem in TO∃∃∃,d reduces to the problem of counting the number of
triangles in a sparse graph via reductions that preserve time up to polylog factors.

Handling the additional sparse relations is highly non-trivial. In particular, to obtain
our result, we first show that the triangle counting problem is hard for model-counting ∃∃∃
formulas in the sparse setting of [30], which is interesting in its own right. For the proof, we
refer to Section 5.1.2.

Since triangle detection is a classical problem, improving the bound of O(n1.407) for ∃∃∃
structures already in the purely total ordering case would be a major algorithmic result.

3.2 Quantifier structures ending in ∀∃∃
For quantifier structures ending in ∀∃∃, we obtain a hard problem: We show that every
problem in TO∀∃∃,d (and thus also PTO∀∃∃,d) reduces to that of determining, for each edge
in a sparse graph, how many triangles contain this edge; we call this problem Edgewise
Triangle Counting (ETC). Again, currently the best algorithm for this problem is essentially
the same as that for triangle detection and counting [10].

I Theorem 9. Edgewise Triangle Counting is hard for model-checking TO∀∃∃,d formulas.

Since the high-level arguments for this result substantially build on the completeness
result for TO∃∃∃,d given in the previous section, we defer a discussion of the techniques to
Section 5.1.3, where we give the proof.

3.3 Quantifier structures ending in ∃∀∃
For the quantifier structure of ∃∀∃, we are unable to establish a complete problem. However,
this quantifier structure admits (co-)nondeterministic algorithms that are faster than the
baseline algorithm.

I Theorem 10. Model-checking formulas in PTOk,d ending in ∃∀∃ can be done in nonde-
terministic and co-nondeterministic time O(nk−2 logd−1(n)).

The main idea is as follows: Consider any ∃x∀yQzφ(x, y, z) property. For the nonde-
terministic algorithm, we simply (nondeterministically) guess x and solve the remaining
2-quantifier problem ∀yQzφ(x, y, z) in time O(n logd−1 n) using the baseline algorithm. For
the co-nondeterministic algorithm, we need to verify that ∀x∃yQzφ(x, y, z). Here, for every x,
we (nondeterministically) guess a witness yx and solve the remaining Qzφ(x, yx, z) formula
using the approach of Theorem 3.

H. An, M. Gurumukhani, R. Impagliazzo, M. Jaber, M. Künnemann, and M. Nina 13

For the case of total ordering properties with additional sparse relations, this approach
is not directly applicable: If, e.g., all guessed witnesses yx happen to participate in many
tuples of the sparse relations, we have to repeatedly solve problems with a large input size.
We remedy this problem by taking care of such large degree witness yx explicitly; while this
incurs a certain slow-down, we can limit it to a factor of O(

√
n).

I Theorem 11. Model-checking formulas in TOk,d ending in ∃∀∃ can be done in nondeter-
ministic and co-nondeterministic time O(mk−3/2 logd−1(m)).

We prove the above (co-)nondeterministic algorithms in Section 5.2.
As a consequence of the above nondeterministic algorithms, assuming NSETH [17], we

cannot establish hardness beyond nk−2−o(1) for PTO∃∀∃,d using deterministic SETH-based
reductions. However, by reducing from a problem with low (co-)nondeterministic complexity,
specifically, the Hitting Set conjecture [5], we can give a conditional lower bound already for
PTO∃∀∃,d (as d→∞) that matches our baseline algorithm.

I Theorem 12. Assuming the Hitting Set conjecture, for all ε > 0, there exists some d such
that model checking formulas in PTO∃∀∃,d requires time Ω(n2−ε).

The proof of this result is reminiscent to some reductions in [24] and is given in Section 6.
We reduce from Hitting Set (given sets of vectors A,B ⊆ {0, 1}c logn for arbitrary c, determine
whether some a ∈ A is non-orthogonal to all b ∈ B) to a formula ∃x∀y∃zψ(x, y, z) as follows:
We think of x ranging over vectors a ∈ A, y ranging over b ∈ B, and think of z as a “proof” of
the fact that a, b are non-orthogonal, given by a prover Merlin. There is a trade-off between
size of the proofs and the required dimension to represent the vectors, which we set in a way
that bounds the number of possible proofs to O(n), resulting in a dimension d growing only
with c (independently of n).

We also give a conditional lower bound from SETH for k > 3 that matches the NSETH
barrier following from the (co-)nondeterministic algorithms. Notably, this lower bound
already applies to dimension d = 2.

I Theorem 13. Assuming SETH, model checking formulas in PTOk,2 ending in ∃∀∃ requires
time Ω(nk−2−ε) for any ε > 0.

We reduce the k-Orthogonal Vectors problem into an ∃k∀∃-quantified 2-dimensional
formula. Intuitively, the first k existential quantifiers choose k vectors, the ∀-quantifier ranges
over all vector-dimensions to test, and crucially, the final ∃-quantifier enables to guess which
of the k vectors has a 0-coordinate in this vector-dimension. Here, the final ∃-quantifier is
instrumental in making the formula’s dimension independent of the vector dimensions. We
give the full proof in Section 6.

3.4 Quantifier structures ending in ∃∃∀
For sentences in PTOk,d ending in ∃∃∀, we obtain the complete problem VCNDd: Given
three sets of vectors X,Y and Z of dimension d, d and 2d, respectively, determine if there an
x ∈ X and a y ∈ Y so that their concatenation x ◦ y is not dominated by any z ∈ Z.

I Theorem 14. For all d, there exists a d′ such that VCNDd′ is complete for model-checking
∃∃∀ formulas in PTOk,d.

This is one of our most interesting results, proven in Section 5.3. We reduce a formula
∃x ∈ X∃y ∈ Y ∀z ∈ Z : ψ(x, y, z) to VCNDd as follows: We carefully divide all pairs

14 The fine-grained complexity of multi-dimensional ordering properties

in X × Y into instances (X1, Y1), . . . , (XL, YL) such that for each instance (X`, Y`), all
comparisons xi < yi, xi = yi, xi > yi for all dimensions i have the same outcome among
pairs x ∈ X`, y ∈ Y`. Thus, for each `, we may simplify ψ to a formula ψ` not involving
comparisons between x and y. In particular, we may express ψ` in CNF, where each clause is
a disjunction of {<,≤,≥, >}-comparisons between xi and zi or between yi and zi (in some
dimension i). Since all such clauses need to be fulfilled simultaneously, for each z ∈ Z and
clause C, we introduce some zC chosen such that the clause C is falsified if and only if x ◦ y
are dominated by zC .

We show a matching conditional lower bound of nk−o(1) for PTO∃k∀,d under the 3-uniform
hyperclique hypothesis.

I Theorem 15. For k ≥ 2 and h ≥ 3, under the h-uniform hk-HyperClique hypothesis,
model checking formulas in PTOk+1,hk ending in ∃∃∀ requires time Ω(nk−o(1)).

We use the first k quantifiers to represent a choice of clique nodes, each represented in its
own dimension, and use the ∀ quantifier to check that no forbidden configuration is used
(a non-edge in the given hypergraph). Naively, this would create Θ(nh) rather than O(n)
objects, which we remedy by reducing from finding hypercliques of size hk (rather than k).
The proof is given in Section 6.

We also establish a SETH-based lower bound directly for VCNDd. The reduction (given
in Section 6) is very similar to our Hitting-Set-based lower bound for ∃∀∃-structures.

I Theorem 16. Assuming SETH, for every ε > 0, there is a d such that VCNDd requires
time Ω(n2−ε).

Specialized algorithm for VCNDd Since our completeness results establish VCNDd as a
central problem for the study of PTOk,d, we consider special cases of the problem in Section 7.
In particular, if X contains vectors of dimension 2 and Y contains vectors of dimension d,
we show the following algorithm, which uses the Erdös-Szekeres Theorem as main ingredient.
We use this to extract lists of vectors so that when we restrict to any dimension, the vectors
appear in monotonic increasing or decreasing order. This way, the vectors that dominate
some fixed vector x form an interval, which allows us to take advantage of fast segment trees
that solve an interval covering problem.

I Theorem 17. There is a Õ(n2− 1
2d) time algorithm for VCND when one set of vectors is

of dimension 2 and the other is of dimension d.

Note that such an improvement to Õ(n2−ε(d)) with ε(d) > 0 for the general VCNDd
problem would refute the 3-uniform hyperclique hypothesis by Theorem 15. Furthermore,
we also give an algorithm for VCNDd when d = O(n).

4 Baseline algorithms

In this section, we give our baseline algorithms via a reduction to orthogonal range counting.
We note that we do not aim to optimize logarithmic factors.

I Lemma 4. Given a formula ϕ(x, y) with d ordering relations and unary predicates and
two sets X, Y of vectors in Rd, there is an O(n logd−1(n)) time algorithm that returns an
array A indexed by each x ∈ X so that A[x] is the number of y ∈ Y such that ϕ(x, y) is true.

H. An, M. Gurumukhani, R. Impagliazzo, M. Jaber, M. Künnemann, and M. Nina 15

Proof. Consider a fixed x in the domain. The task is to count the number of y such that
ϕ(x, y) is satisfied. Assume the unary relations in the vocabulary are R1, . . . , Rk. The truth
value of ϕ(x, y) will depend on two factors: the order between x and y in each of the d
dimensions, and the unary relations R1, . . . , Rk satisfied by y. We will denote the first by a
vector α and the second by a vector β. Since k and d are constant, there are finitely many
possibilities for α and β, so we may consider them all. So, when we find an α and β that
makes ϕ(x, y) true, we can orthogonal range search for vectors x, y that have order α and
vectors y that satisfy the unary relations given by β.

Formally, consider the truth value of ϕ(x, y) with respect to some α ∈ {0, 1,−1}d and
β ∈ {0, 1}k, where the comparison of x and y under the ith ordering is given the truth
value according to α[i] and every unary relation on y is given the truth value according
to β. Here, α[i] = 1 denotes x >i y, α[i] = 0 denotes x =i y, and α[i] = −1 denotes
x <i y. If β[i] = 1 then we set Ri(y) to true and otherwise set Ri(y) to false. To compute
|{y | ϕ(x, y) is satisfied}|, for each (α, β) that satisfies ϕ(x, y), we will count the number of
y ∈ Y such that their order with x is given by α and the unary relations they satisfy is given
by β. Then, we will sum these values over every (α, β) that satisfy ϕ(x, y).

Specifically, observe that in linear time, we can compute, for each β ∈ {0, 1}k, the set Yβ
of vectors with unary relations given by β. To count, given α ∈ {0, 1,−1}d, the number of
y ∈ Yβ so that their order with x is α, we apply a standard orthogonal range counting [35, 22].
If αi = 1, the range in the ith dimension will be [0, xi). If αi = 0, then the range in the ith
dimension will be {xi}, and if αi = −1, then the range in the ith dimension will be (xi, n]. For
example, let x = (3, 4, 5), and let α = (1, 0,−1). Then, we query the number of y ∈ Yβ that
lie in the range [0, 3)×{4}×(5, n]. Such a query can be done in time O(logd−1 n), see [35, 22].
Overall, we can compute the total number of y satisfying ϕ(x, y) in time O(logd−1 n).

Performing this for each x ∈ X takes total time O(n logd−1 n). J

We obtain our baseline algorithm for purely total ordering relations by observing that
the above information is sufficient to decide any PTO2,d formula.

I Theorem 3. There is an algorithm running in time O(n logd−1(n)) for model-checking a
two-quantifier formula Q1xQ2yϕ(x, y) with d ordering relations and unary predicates.

Proof. From Lemma 4, we can compute an array A indexed by vectors x ∈ X so that
A[x] = #ϕ(x, ·) in time O(n logd−1 n). If Q1Q2 is ∃∃, it is enough to check that #ϕ(x, ·) > 0
for some x ∈ X. Similarly, if Q1Q2 is ∃∀, it is enough to check that #ϕ(x, ·) = |Y | for some
x ∈ X. Both can be done by simply scanning the array. All other formulas are equivalent to
one of these cases by negation. J

I Corollary 5. Model-checking formulas in PTOk,d is in TIME(nk−1 logd−1(n)).

Proof. Simply brute force search over the first k − 2 quantifiers, then use the 2-quantifier
algorithm that runs in time O(n logd−1(n)). This takes time O(nk−1 logd−1(n)). J

In fact, we can extend these ideas to give a baseline algorithm for the class TOk,d.

I Theorem 6. Model-checking formulas in TOk,d is in TIME(mk−1 logd−1(m)).

Proof. We will exhaustively search over the first k−2 quantifiers. Then, our plan will be to try
to count |{y | ϕ(x, y) is satisfied}| by separating into two cases: these are when objects x and
y appear (or do not appear) together in a sparse relation. We will create an auxiliary formula
ϕ∗(x, y) where every relation R(x, y) that appears in ϕ(x, y) is set to false. Then, we use the
algorithm from Lemma 4 to compute an array A∗ with A∗[x] = |{y | ϕ∗(x, y) is satisfied}|.

16 The fine-grained complexity of multi-dimensional ordering properties

If y shares no relations with x, then ϕ(x, y) is true if and only if ϕ∗(x, y) is true. However,
if x and y appear together in some relation, then it is possible that ϕ∗(x, y) and ϕ(x, y)
have different truth values. Since our relation is sparse, we can correct this in O(m) time
by exhaustively searching over the vectors y that appear in some relation with x. If ϕ(x, y)
is true and ϕ∗(x, y) is true, then we do not alter our current count. If ϕ(x, y) is true but
ϕ∗(x, y) is false, then we increment our count by 1. Similarly, if ϕ(x, y) is false and ϕ∗(x, y)
is true, we decrement our count by 1. Lastly, if both ϕ(x, y) and ϕ∗(x, y) are false, we do not
alter the count. With this, we can compute an array A indexed by x in time O(m logd−1 m)
where A[x] = |{y | ϕ(x, y) is satisfied}|.

Therefore, given a sentence in TOk,d, we exhaustively search over the first k−2 quantifiers
then compute this array A. If the last two quantifiers are ∃∃, it is enough to check that some
entry in the array is greater then 1, and if the last two quantifiers are ∃∀, it is enough to
check that some entry in the array is the size of the domain for the last quantifier. Overall
this takes time O(mk−1 logd−1 m). J

5 Completeness for quantifier structures

In this section, we give our completeness results for each quantifier structure, including
evidence why we do not expect any quantifier structure other than ∃∃∀ to contain a complete
problem for the full classes PTOk,d, TOk,d.

5.1 Quantifier structures reducing to triangle problems
In this section, we characterize the complexity of problems for the class of ∃∃∃ and ∀∃∃
formulas with ordering relations. We show that for PTO∃∃∃, the complexity of the hardest
problem in the class is equivalent to that of triangle detection in sparse graphs. In other
words, triangle detection is (equivalent to) a complete problem for this class. We show that
every problem in TO∃∃∃ (i.e., when we also allow sparse relations in addition to orderings)
reduces to the problem of counting triangles in sparse graphs. (Thus, the complexity of this
class is somewhere between deciding whether a triangle exists and counting the number of
such triangles. Currently, the best algorithms for these problems are identical ([10]), but
there is no known proof of equivalence.) We show that every problem in TO∀∃∃ reduces
to that of determining, for each edge in a sparse graph, how many triangles contain this
edge. Again, currently the best algorithm for this problem is essentially the same as that for
triangle detection and counting ([10]).

In particular, these results show that these classes are all decidable in time O(m1.41).
Hence, these quantifier structures are significantly easier to check than the others we consider
(assuming SETH and Low-dimension hitting set conjectures).

5.1.1 PTO∃∃∃

I Theorem 7. The triangle detection problem in sparse graphs is fine-grained equivalent to
a problem that is complete for model-checking ∃∃∃ formulas with only ordering relations and
unary relations.

Proof. The triangle detection problem in sparse graphs asks if for a graph G = (V,E) given
in adjacency list format, there exist x, y, z ∈ G such that (x, y), (y, z), (x, z) ∈ E. We first
show that this problem is equivalent under exact-time preserving reductions to an ordering
problem with the same logical structure and dimension 3. The problem is: Given three sets
of vectors A,B,C of dimension 3, are there a ∈ A, b ∈ B, and c ∈ C with a1 = c1, a2 = b2

H. An, M. Gurumukhani, R. Impagliazzo, M. Jaber, M. Künnemann, and M. Nina 17

and b3 = c3? To reduce triangle detection to this problem, assign the vertices names that
are positive integers, i.e., we identify V with {1, . . . , n}. For each edge (x, y) ∈ E, we create
vectors (x, y, 0) ∈ A, (0, x, y) ∈ B and (y, 0, x) ∈ C. Thus, the number of vectors is linear
in the number of edges in our graph, and the sets of vectors can be created in linear time.
If there is a triangle, x, y, z in the graph, (x, y, 0) ∈ A, (0, y, z) ∈ B, and (x, 0, z) ∈ C are
three vectors satisfying the constraints. Contrapositively, any three vectors satisfying the
constraints must be of the above form, so must correspond to a triangle in the original graph.

In the reverse direction, for each vector (a1, a2, a3) ∈ A, create vertices (1, a1) and (2, a2)
if not already present and add an edge from vertex (1, a1) to vertex (2, a2). Similarly,
we have edges from (2, b2) to (3, b3) for all (b1, b2, b3) ∈ B, and from (3, c3) to (1, c1) for
(c1, c2, c3) ∈ C. The graph created has a linear number of edges and triangles correspond
exactly to solutions to our problem. So this problem is equivalent to triangle detection.

Thus, the maximum complexity of predicates in PTO∃∃∃ is at least that of triangle
detection, since it is equivalent to a member of this class.

We next show how to reduce any ∃∃∃ pure ordering problem to triangle detection. The
first step is to reduce such a problem to one with only equality checks.

Consider a formula of the form ∃x∃y∃zϕ(x, y, z), where there are d ordering relations.
Say that a < b for positive integers a and b, where a = ak . . . a0 in binary, and b = bk . . . b0
in binary. Call the position of divergence the first j (starting at the high order bits) so that
that bj > aj . Then ak . . . aj+1 = bk . . . bj+1, aj = 0 < bj = 1. If a = b, we call −1 the point
of divergence. We break up the possible triples x, y, z into cases based on their ordering
in the d different orders, and the point of divergence between their ranks for every pair in
every order. Since the ranks are integers from 1 to n, there are 1 + logn possible points
of divergence. Furthermore, since there are only two possible orderings for each pair per
order, there are at most O(log3d n) cases in total. We further break up into sub-cases based
on which subsets of unary relations are true for x, y, z, which is at most constantly many
sub-cases per case.

We determine for each case, whether there is an x, y, z with those comparisons and
points of divergence and unary relations for which ϕ(x, y, z) holds. However, since each case
specifies all comparisons and unary relations, ϕ(x, y, z) is either constantly true or constantly
false for these cases. So this simplifies to determining, for each sub-case where ϕ(x, y, z) is
true, whether there is a triple (x, y, z) consistent with that sub-case. For this, we use the
characterization above. First, for each vector, we discard it if it does not match the unary
relations for this sub-case. Secondly, if in the case xi < yi, and the point of divergence for
the comparison is j, we discard x as a possibility if xi,j 6= 0 and y as a possibility if yi,j 6= 1,
and the reverse if xi > yi.

For each non-discarded vector x, we create a new vector X of dimension 3, where in the
second coordinate we concatenate in order of i all the strings xi,k, ..xi,ji+1 where ji is the
point of divergence for xi and yi, and do likewise for the points of divergence for xi and zi in
the first coordinate. The third coordinate has a default value like −1. For y, we do likewise,
putting the parts related to the points of divergence with x in the second coordinate, and
with z in the third to create Y , and for z we put the parts related to x in the first coordinate,
and the parts related to y in the third.

Then as above, we ask: is there a triple X,Y, Z so that X1 = Z1, X2 = Y2 and Y3 = Z3?
If so, since all the strings concatenated have a fixed length, each concatenated string must
be identical, so the corresponding x, y, z do have the orders and the points of divergence for
the sub-case we are considering. Conversely, if x, y and z have those points of divergence,
each string concatenated will be identical, so the equations will hold. As noted above, this

18 The fine-grained complexity of multi-dimensional ordering properties

problem is equivalent to triangle detection.
Thus, triangle detection is hard for PTO∃∃∃, and the equivalent problem is complete for

this class. J

I Corollary 18. Model checking for every problem in PTO∃∃∃ can be solved in Õ(n1.407...)
time.

Proof. Combine the above reduction with the algorithm from [10]. J

5.1.2 TO∃∃∃

A more general statement of the construction above is:

I Lemma 19. Let X,Y, Z be sets of vectors of constant dimension d. In time O(n logO(1) n),
we can construct a family of O(logO(1)(n)) tripartite multi-graphs so that:
1. For the tripartition of vertices into A,B,C of each graph Gi, each element x ∈ X

corresponds to at most a single edge ex between A and B, each element y ∈ Y corresponds
to at most a single edge ey between B and C, and each element z ∈ Z corresponds to at
most a single edge ez between A and C, and there are no other edges. Given x, i, one can
compute ex in constant time, or say it doesn’t exist.

2. Given i, we can compute in constant time a complete set of values for all unary relations
on x,y, and z, and values for order relations between xj , yj and zj for 1 ≤ j ≤ d, so that
for every triangle ex, ey, ez in Gi, x, y, z satisfy these relations.

3. For every triple x, y, z, ex, ey, ez form a triangle in exactly one Gi.

We will use this lemma to show:

I Theorem 8. Every problem in TO∃∃∃,d reduces to the problem of counting the number of
triangles in a sparse graph via reductions that preserve time up to polylog factors.

Proof. We will first show that the triangle counting problem is complete for the class #FO3:
given a quantifier-free formula Φ(x, y, z) with only sparse relations, count the number of
solutions x, y, z.

I Lemma 20. We can reduce a problem Φ in #FO3 to the case where we have to count the
number of solutions for constantly many formulas where each is a conjunction of positive
relations.

Proof. We first reduce from the general case to the case when Φ is a conjunction of relations
and negated relations. We branch on all possible settings of the relations that could hold
among x, y, z, and we count the number of triples satisfying each conjunction that satisfies
Φ (ie., we write Φ as a DNF of mutually exclusive terms, and count each term). Then
we add up the results. Secondly, we can reduce to the case when all relations appear
positively. If ¬R(x, y) (or any other subset of variables) appears in the conjunction, we
can write Φ = ¬R(x, y) ∧Ψ(x, y, z), where Ψ has strictly fewer negated relations, as does
R(x, y) ∧Ψ(x, y, z). If we count both the number of triples that satisfy Ψ and R(x, y) ∧Ψ,
their difference is the number that satisfy Φ. Thus, we can reduce any such counting problem
with i ≥ 1 negated relations to two such problems with i− 1 negated relations. Applying
this repeatedly, we reduce to the case with no negations. J

I Lemma 21. Sparse triangle counting is complete for #FO3.

H. An, M. Gurumukhani, R. Impagliazzo, M. Jaber, M. Künnemann, and M. Nina 19

Proof. We apply Lemma 20 and reduce to a set of counting problems which are conjunctions
of positive relations. If the set of binary or greater relations is empty, we can individually
count in linear time the number of elements x that satisfy all unary relations R(x) and
similarly for y and z, and return their product. If there is a relation that involves all three
variables, we enumerate the the triples satisfying that relation and compute the number
of those that satisfy Φ. If there are no 3-ary relations, and the binary relations are only
between two specific variables (e.g., x and y), we can enumerate all such pairs x, y, then
separately count the z’s that satisfy unary relations and multiply these two counts. If there
are specified relations on one of the variables, say x, and relations between x and y as well as
x and z, but no relations between the y and z, we can compute, for each x both the number
of consistent y’s and the number of consistent z’s in time equal to the number of tuples
containing x. Then, we multiply these counts and sum up the results. This takes O(m) time
total. Finally, if there are relations specified between every pair of variables, we can use these
to specify the edges of a tripartite graph where the vertices are the elements that satisfy the
unary relations and edges are pairs that satisfy all binary relations. This graph has at most
O(m) edges, so it is an instance of sparse triangle counting of the same size as our original
problem. J

Now we return to the theorem. Given a formula Φ(x, y, z) with both ordering and sparse
relations as well as input relations, we use the ordering and unary relations to construct
the family of multi-graphs Gi as in the lemma. Because each triple x, y, z appears as a
triangle in exactly one graph, it suffices to decide whether there is an i and a triple x, y, z
so that ex, ey, ez form a triangle in Gi and Φ(x, y, z) holds. Because for each i, all unary
and ordering relations are fixed for triangles, we can compute a restricted formula Φi(x, y, z)
with only sparse binary or greater arity relations in x, y, z so that Φi(x, y, z) is equivalent
to Φ(x, y, z) for triangles in Gi. Thus, it is equivalent to decide whether there is an i and a
triple x, y, z so that ex, ey, ez form a triangle in Gi and Φi(x, y, z).

Gi is a multigraph, because different elements x might map to edges ex with the same
endpoints (but the elements themselves might have different binary relations and therefore be
distinguishable). Let Hi be the graph corresponding to Gi when we combine parallel edges.
For each tuple in a relation and each pair of elements x, y in the tuple, if ex and ey do not
share an endpoint, x and y cannot be part of a triangle, and if they do, the endpoints form a
triple of vertices in Hi. We can enumerate all such triples in O(m) time. Any triangle in
Hi that is not one of these triples corresponds to three elements that have no true relations.
We can tell if there is such a triangle by counting the total number of triangles in Hi, and
subtracting the number of triangles among the O(m) special triples. If Φi is true when all
relations are true, and there is such a triangle, we can return true. If not, any x, y, z that
form a triangle and satisfy Φi must form a triangle on our list.

We can, as a linear-time pre-processing step, for each edge (a, b), compute the set of
elements x so that ex goes from a to b, and for each triple in our collection store the set
of relations among x, y, z. For each triple Tj = (a, b, c) in our collection, we have sets Xj

mapping to (a, b), Yj mapping to (b, c), and Zj mapping to (c, a). Let mj be the number of
relations among the elements of these sets. Since any two elements in Xj , Yj , or Zj with
no relations are indistinguishable, we can remove all but one such element from each set so
that there are at most O(mj) elements total. Since each relation determines at most a single
triangle, we have

∑
jmj ≤ m. If we can count triangles in time O(m1+α) for sparse graphs,

as we saw earlier, we can compute the number of triples among Xi, Yj , Zj that satisfy Φi

in O(m1+α
j) time. If any count is positive, we return true. If all counts are 0, we return

false. The total time is
∑
j O(m1+α

j) ≤
∑
j O(mαmj) ≤ O(m1+α). Thus, the exponent for

20 The fine-grained complexity of multi-dimensional ordering properties

the general class is the same as for counting triangles in sparse graphs. J

5.1.3 TO∀∃∃

We can get a similar but more complex hard problem for TO∀∃∃. Consider the problem of
given a tripartite graph in adjacency list format, creating an array indexed by edges and
giving the number of triangles containing that edge. The method of [10] can be used to give
an algorithm with the same complexity for this problem as for counting triangles or deciding
whether a triangle exists. Call this problem Edgewise Triangle Counting (ETC).

We will show that the complexity of this problem is an upper bound for the complexity
of any problem in TO∀∃∃.

Consider the class of problems: For a formula Φ(x, y, z) and a model given as lists of
tuples for each relation, create an array indexed by x, giving the number of y, z so that
Φ(x, y, z) holds. We use similar argument as for the TO∃∃∃ case to show that this class of
problems reduces to ETC: We apply Lemma 20 and reduce to counting for constantly many
formulas which are conjuction of positive relations. We observe that each such formula is
essentially either counting triples overall, counting triples containing a single edge, a path of
length 2, a triangle, or a hyperedge. All but the triangle can be solved in linear time, even in
the array version. In the triangle case, we are counting for each x, the number of triangles
involving a single vertex x. However, we can compute the number for a vertex by summing
up all the numbers for adjacent edges to some y, since every triangle in the tripartite graph
contains exactly one such edge.

Next, to decide a ∀x∃y∃zΦ(x, y, z), we create the graphs Gi again just as before, and
define Φi(x, y, z) containing only sparse bipartite or 3-ary relations as before. For each graph,
we will find the set of x so that there is a triple x, y, z so that Φi(x, y, z) and ex, ey, ez form
a triangle in Gi. The union of these sets is thus the set of x so that there are y, z with
Φ(x, y, z), and we check to see if that is all x. As before, we find the set of triangles in Hi

determined by tuples in a relation in O(m) time. For every edge in Hi, we count the number
of triangles in Hi containing this edge, and subtract the number of such triangles on our
list. For each edge in Hi where this is positive, if Φi is satisfied by all false relations, we
add the corresponding elements to our set. We then need to also include those x so that
there is some triple x, y, z in our set with Φi(x, y, z). As before, if we can solve ETC in time
O(m1+α), we can solve the array counting problem for the elements corresponding to each
triple in O(m1+α

j) time, and then mark those elements with a positive array position. All
elements with no relations should be marked or unmarked identically, so we only need to
include one such element in our sub-routine, but mark all such elements.

I Corollary 22. Model-checking for sentences in TO∀∃∃ can be done in time Õ(m1.41).

5.2 Nondeterministic complexity of TO∃∀∃

Here, we show why problems in TO∃∀∃ are unlikely to be SETH-hard. In particular, we will
show that every problem in PTO∃∀∃ is in NTIME(n logO(1) n) ∩ co-NTIME(n logO(1) n) and
every problem in TO∃∀∃ is in NTIME(m3/2 logO(1) m) ∩ co-NTIME(m3/2 logO(1) m). From
[17], it then follows that if the Nondeterministic Strong Exponential Hypothesis is true, then
no reduction can show these problems are SETH-hard with exponent greater than 1.5. Via
direct reduction, for PTOk, no SETH-hardness can be shown for exponent greater than k− 2
for any quantifier sequence ending with ∃∀∃. Later, we will show that SETH hardness is
possible up to that same exponent (Theorem 13).

H. An, M. Gurumukhani, R. Impagliazzo, M. Jaber, M. Künnemann, and M. Nina 21

I Lemma 23. Model-Checking sentences in PTO∃∀∃ can be done in nondeterministic and
co-nondeterministic time O(n logd−1 n). Similarly, model-checking in TO∃∀∃ can be done in
nondeterministic and co-nondeterministic time O(m3/2 logd−1 m)

Proof. Let ∃x∀y∃zΦ(x, y, z) be a problem in PTO∃∀∃. To solve it using a nondeterministic
algorithm, we guess element x∗ nondeterministically and verify ∀y∃zΦ(x∗, y, z). This latter
is a two quantifier statement and so can be solved in quasi-linear time using the base-line
algorithm, once we add unary relations U(y) ≡ (x∗ ≤i y) for each comparison relation ≤i.

The complementary problem is ∀x∃y∀z¬Φ(x, y, z). To solve it nondeterministically, for
each x we guess a yx. Then we create a new comparison relations (x ≤′i z) ≡ (yx ≤i z) for
every comparison relation ≤i, and new unary relations U(x) ≡ (x ≤ yx) for each comparison
relation ≤i and U ′(x) = U(yx) for each unary relation U . This can be done in linear time.
Then we can rewrite ¬Φ(x, yx, z) = Ψ(x, z) by replacing relations involving yx with these
new relations. Then we verify that ∀x∀zΨ(x, z) using the baseline algorithm in quasi-linear
time.

If Φ(x, y, z) also has sparse relations, we can use the same method. However, for the
co-nondeterministic algorithm, we need to create relations R′(x, z) ≡ R(yx, z) for sparse
relations R. If many yx are in many tuples for R, this can blow up the number of tuples in
the relation. We use the low-degree/high-degree method to get around this. Without loss of
generality, we can assume that the variables x, y, z come from disjoint sub-sets of elements,
possibly by duplicating elements. For each y∗ that appears in ≥ m1/2 tuples, we use the
baseline algorithm to compute {x|∀zΦ(x, y∗, z)}. We then delete this set of elements x as
candidates for the first quantifier since we have shown that the statement ∃y∀zΦ(x, y, z)
is true for these x, and delete y∗ since it cannot be used for any further x’s. There are at
most O(

√
m) such y, and each use of the baseline algorithm takes quasi-linear time. At the

end, all y’s appear in at most
√
m tuples, and we can nondeterministically guess yx for each

remaining x, and create the relations previously described, as well as the relations described
above for each sparse relation. Since each x will appear in at most O(

√
m) new tuples, the

total number of tuples in the new model is O(m3/2). Using the baseline algorithm on the
resulting two quantifier model-checking problem thus takes time O(m3/2 logd−1 n). J

Exhaustively searching over the first k − 3 quantifiers gives us the following.

I Theorem 10. Model-checking formulas in PTOk,d ending in ∃∀∃ can be done in nonde-
terministic and co-nondeterministic time O(nk−2 logd−1(n)).

I Theorem 11. Model-checking formulas in TOk,d ending in ∃∀∃ can be done in nondeter-
ministic and co-nondeterministic time O(mk−3/2 logd−1(m)).

5.3 Quantifier structure ∃∃∀
Lastly, we will show that VCND is a complete problem for model-checking ∃∃∀ formulas with
ordering relations.

I Theorem 14. For all d, there exists a d′ such that VCNDd′ is complete for model-checking
∃∃∀ formulas in PTOk,d.

Proof. We start with a first-order formula ∃x∃y∀zϕ(x, y, z) containing ordering relations
between x, y, and z. We want to reduce to VCNDd: Given sets of d-dimensional vectors X,
Y and 2d-dimensional vectors Z, is there a pair x ∈ X and y ∈ Y such that x ◦ y 6≤dom z for
all z ∈ Z. We will use a similar technique as in the proof of Theorem 7.

22 The fine-grained complexity of multi-dimensional ordering properties

I Lemma 24. We can write

ϕ(x, y, z) ≡
∨

α∈{0,1,−1}d

ψα(x, y) ∧ ϕα(x, y, z),

where for each α, ϕα(x, y, z) does not contain any comparisons between x and y.

Proof. For vectors x ∈ X and y ∈ Y , define vx,y ∈ {0, 1,−1}d where vx,y[i] = −1 if x <i y,
vx,y[i] = 0 if x =i y, and vx,y[i] = 1 if x >i y. The vector vx,y captures the relationship
between x and y with respect to the total orderings ≤i. Thus, we consider the formula

ϕ(x, y, z) ≡
∨

α∈{0,1,−1}d

ψα(x, y) ∧ ϕα(x, y, z),

where ψα(x, y) is true if and only if vx,y = α and ϕα(x, y, z) is obtained by replacing any
predicates comparing x and y under the ith ordering relation with the truth value given by
αi. J

I Lemma 25. For each α, we can efficiently construct a set Iα and for each ` ∈ Iα, construct
sets X`, Y` with the following properties:

For every pair x ∈ X and y ∈ Y with vx,y = α, there exists exactly one ` ∈ Iα such that
x ∈ X`, y ∈ Y`.
For every ` ∈ Iα, x ∈ X`, y ∈ Y` it holds that vxy = α.

Proof. As before, say that a < b for positive integers a and b, where a = ak . . . a0 in binary,
and b = bk . . . b0 in binary. The position of divergence is the first j starting at the high order
bits so that bj 6= aj . Then, ak . . . aj+1 = bk . . . bj+1, aj = 0 < bj = 1. If a = b, we call −1
the point of divergence. Recall that we are working with d-dimensional vectors in X and Y
with integer entries from 1 to n. Consider the set S = {(i1, . . . , id) | −1 ≤ ij ≤ logn}. We
will use elements of S to “guess” the points of divergence between two vectors. Consider
arbitrary w ∈ S.

We will alter the vectors in X and Y according to w. Say that wi = j. If xi = ak . . . a1
and yi = bk . . . b1 in binary, then we replace the ith coordinate in x with two coordinates, these
being ak . . . aj+1 and aj . Similarly, we replace the ith coordinate in y with two coordinates
bk . . . bj+1 and bj . If j = −1 we can simply put a special symbol for the second coordinate.
We perform this operation for each coordinate i and each x ∈ X and y ∈ Y .

Then, we sort these vectors by the first dimension. We will group together the vectors
that have the same value in the first coordinate. If α1 = 1 (i.e. its required that the first
entry of x has value larger than y), then we will discard all the vectors in the group that
belong to the set X and have 0 in the second coordinate (since at point of divergence y will
have larger value). Similarly, we will discard all the vectors in the group that belong to the
set Y and have 1 in the second coordinate. Analogously, if α1 = −1, we discard vectors from
X which have 1 in the second coordinate and vectors from Y when they have 0 in the second
coordinate. If α1 = 0, we discard the all the vectors unless w1 = −1. Notice now that for
every pair of vectors x ∈ X and y ∈ Y that belong to this group, the relationship of x and y
under ≤1 agrees with α1. We recurse on each dimension and perform this for each group.
The vectors that came from X then form the set X` and the vectors from Y form Y`. The
set I indexes each of the possible groups that were formed. J

Now, for each pair of sets X`, Y` we will create a VCND instance such that it is a yes
instance if and only if there exist x ∈ X`, y ∈ Y` such that ϕα(x, y, z) is true for every z ∈ Z.

H. An, M. Gurumukhani, R. Impagliazzo, M. Jaber, M. Künnemann, and M. Nina 23

We will assume that the vectors in X` and Y` appear in their original form, rather than
how they were altered in the previous step. Additionally, to make the reduction work, each
vector x = (x1, . . . , xd) will be altered to be (x1,−x1, . . . , xd,−xd). We perform the same
operation to vectors in Y . We can assume that ϕα(x, y, z) is written in conjunctive normal
form. For each clause C in ϕα(x, y, z) and each z ∈ Z, we create a new vector zC in 4d
dimensions. Let z = (z1, . . . , z2d). If the comparison x >i z appears in the clause C, then
we set the (2i − 1)th coordinate to zi and the 2ith coordinate to ∞. If the comparison
x <i z appears in the clause C, then we set the (2i − 1)th coordinate to ∞ and the 2ith
coordinate to −zi. We perform the same operation for comparisons between y and z, this
time making the changes in the corresponding dimensions in the last 2d dimensions of zC . If
x ≤i z appears, then as our vectors have integer entries, we can treat this as x− 1 <i z (the
same trick works for x ≥i z). We can assume x =i y does not appear in any clause since
((x =i y) ∨ C) where C is some clause is equivalent to ((x ≥i y) ∨ C) ∧ ((x ≤i y) ∨ C). To
give an example, when d = 2, and we have the clause (x >1 z) ∨ (y <2 z), we create the
vector (z1,∞,∞,∞,∞,∞,∞,−z2). Thus, if x ◦ y 6≤dom z, then x, y, z satisfy this clause.
We create this vector zC for each clause C in ϕα(x, y, z) and each z ∈ Z. At least one of
these VCND instances is a yes-instance if and only if there is some x ∈ X and y ∈ Y so that
x, y, z satisfy each clause of ϕ(x, y, z) for all z ∈ Z.

The last point to make is that this reduction is fine-grained. We have many VCND
instances of the form X`, Y`, Z where ` ∈ Iα. If |X`| or |Y`| is of size less than n1−ε/3, then we
use the data structure from [18] to decide this instance in time O(|X`||Y`| logO(d)). Doing this
for each instance where either |X`| or |Y`| is less than n1−ε/3 can take time at most n2−ε/3.
Otherwise, |X`||Y`| ≥ n2−2ε/3. Since there are at most |X||Y | = O(n2) many pairs that can
arise, we are in this case at most n2ε/3 times. If we use the improved O(n2−ε) time algorithm
on these instances, we will use time at most O(n2−ε/3). Combining this with the previous
step gives an O(n2−ε/3) algorithm for model-checking the sentence ∃∃∀ϕ(x, y, z). J

6 Hardness results

In this section, we will present the proofs of Theorem 15, 12 and 13. These results will
establish hardness for model-checking sentences ending in ∃∃∀ or ∃∀∃.

I Theorem 15. For k ≥ 2 and h ≥ 3, under the h-uniform hk-HyperClique hypothesis,
model checking formulas in PTOk+1,hk ending in ∃∃∀ requires time Ω(nk−o(1)).

Proof. For simplicity, we will state the proof for h = 3; the adaptation to h > 3 is
straightforward. We will reduce determining if a 3-uniform hypergraph contains a 3k-
HyperClique to deciding a k + 1 quantifier sentence in PTOk+1,3k. As a warmup, we will
reduce 3-uniform k-HyperClique to a sentence in PTOk+1,k with O(n3) objects, which
gives an Ω(nk/3−o(1)) lower bound. Then, we will describe how to alter the sentence by
reducing from 3-uniform 3k-HyperClique to give the desired lower bound (for h > 3, this
will correspond to reduction from h-uniform hk-HyperClique).

Without loss of generality, we may assume that we are given a k-partite 3-uniform
hypergraph G = (V1 ∪ · · · ∪ Vk, E) using standard color-coding arguments. We view each Vi
as a disjoint copy of {1, . . . , n}.

The symbols � and ∗ are special constants which we use to differentiate between different
vertex and non-edge objects, which will introduce now. For 1 ≤ i ≤ k and each vertex v ∈ Vi,
we introduce a vertex object of dimension k where the i-th entry is set to v, and remaining
k − 1 entries are set to �. This allows us to represent a choice for including some vertex v
for part Vi into our clique

24 The fine-grained complexity of multi-dimensional ordering properties

For each non-edge {va, vb, vc} 6∈ E with va ∈ Va, vb ∈ Vb, vc ∈ Vc, we create a non-edge
object: We set the a-th, b-th and c-th dimension to va, vb and vc, respectively, and set all
other dimensions to the special constant ∗. Intuitively, the non-edge objects represents all
forbidden configuration of our clique.

The claim is that deciding the following formula decides the existence of a k-HyperClique:

∃x1∃x2 . . . ∃xk∀yT (x1, . . . , xk) ∧

E(y)→

 ∧
1≤i1<i2<i3≤k

C(xi1 , xi2 , xi3 , y)

 ,

where

T (x1, . . . , xk) checks if each xi is a vertex object for the part Vi. Doing so will simply
involve checking that for all i, all but the i-th coordinate of xi is the � constant.
E(y) checks if y is a non-edge object. This can be done by checking whether some
coordinate is the ∗ constant.
C(xi1 , xi2 , xi3 , y) checks if the “forbidden” edge represented by y is different from the
edge given by the vertices that xi1 , xi2 , xi3 represent. This can be done by checking that
y is different from at least one of xi1 , xi2 , or xi3 in the i1-th, i2-th, and i3-th coordinate
respectively.

However, there are O(n3) many vectors in the domain. We will now remedy this by
reducing from 3k-HyperClique. To this end, let G be a 3k-partite 3-uniform hypergraph
with vertex parts V1, . . . , V3k. This time, each vertex object will represent a choice of 3
vertices: we group the 3k vertex parts into k groups V ′1 , . . . , V ′k of three vertex parts each.
For each V ′i (representing the three vertex parts V3i+1, V3i+2, V3i+3), and every triplet of
vertices v ∈ V3i+1, v

′ ∈ V3i+2, v
′′ ∈ V3i+3, we create a vertex object of dimension 3k, where

we set the coordinates 3i+ 1, 3i+ 2 and 3i+ 3 to v, v′, and v′′, respectively, and all other to
the special constant �.

The edge objects will be constructed as before. The formula will change very slightly
to implement the same idea as before: The formula T (x1, . . . , xk) will again check that
the x1, . . . , xk are vertex objects and E(y) will check that y is a non-edge object. For
any non-edge object y, we need to ensure that the non-∗ dimensions a, b, c are not all
equal to the dimensions a, b, c in the corresponding vertex objects xa′ , xb′ , xc′ , where a′, b′, c′
denote the groups Va′ , V ′b′ , V ′c′ containing Va, Vb, Vc, respectively. Again, we have O(n3)
objects, but this time we reduced from 3k-HyperClique: An O(nk−ε)-time algorithm for
model-checking the above sentence (in PTOk+1,3k) would give an O(n3k−3ε) algorithm for
3-uniform (3k)-HyperClique. J

The following result establishes hardness of ∃∀∃ with no additional quantifiers.

I Theorem 12. Assuming the Hitting Set conjecture, for all ε > 0, there exists some d such
that model checking formulas in PTO∃∀∃,d requires time Ω(n2−ε).

Proof. Consider the Hitting Set problem: we are given sets U, V of n vectors in {0, 1}d with
d = c logn, and the task is to determine whether there is some u ∈ U such that for all v ∈ V
there is some k ∈ [d] with u[k] = v[k] = 1. Recall that the Hitting Set conjecture is that
for all ε > 0 there is some c such that Hitting Set with d = c logn cannot be solved in time
O(n2−ε).

The idea is to block the d vector-dimensions into b = dd/se blocks of size s = log(n)/2,
and define a 2b-dimensional order property: For each vector u ∈ U , we define an object

H. An, M. Gurumukhani, R. Impagliazzo, M. Jaber, M. Künnemann, and M. Nina 25

whose first b dimensions represent u. Here, each dimension i encodes the i-th block of s bits
of u, i.e., each dimension i uses an (arbitrary) total order on the block configurations {0, 1}s.
Likewise, for each vector v ∈ V , we define an object whose last b dimensions represent the
bits of v.

The formula will be:

∃x ∈ X∀y ∈ Y ∃z ∈ Z :
b∧
i=1

(zi = zb+i =∞ or (xi = zi ∧ yi+b = zi+b)) .

Here, for any x, y, an appropriately chosen z ∈ Z is supposed to serve as a witness that
there is some k ∈ [d] with x[k] = y[k] = d. To do this, for any block i, we consider pairs
of admissible configurations of the i-th blocks of x and y, namely: for any α, β ∈ {0, 1}s
such that there is some k ∈ [s] with α[k] = β[k] = 1, we define the object zi,α,β such that its
i-th dimension in the first half is α, its i-th dimension in the second half is β, and all other
dimensions are ∞.

By this construction, the formula is satisfied if and only if for there is some u ∈ U such
that for all v ∈ V we can find a block i and a corresponding bit k in block i in which both x
and y have a 1, i.e., u and v are non-orthogonal. Since |Z| ≤ 22s = n, we obtain our lower
bound, assuming the Hitting Set conjecture: Let ε > 0 and take a c such that Hitting Set on
dimension d = c logn has no O(n2−ε) time algorithm. Then, a O(n2−ε) time algorithm for
PTO∃∀∃,b with b ≤ d2ce would give a Hitting Set algorithm on dimension d = c logn in time
O(n2−ε), contradicting the assumption. This concludes the claim. J

Finally, for k-quantifier sentences ending in ∃∀∃, we have the following result.

I Theorem 13. Assuming SETH, model checking formulas in PTOk,2 ending in ∃∀∃ requires
time Ω(nk−2−ε) for any ε > 0.

Proof. We will reduce k-Orthogonal Vectors to deciding a first-order sentence with k + 2
quantifiers ending in ∃∀∃ with 2 ordering relations. We will associate the elements of the
domain with 2-dimensional vectors. Let A = {a1, . . . , an} be our k-Orthogonal vectors
instance. We will assume that for every coordinate j, there is some vector a ∈ A with
a[j] = 0. Otherwise, this is trivially a no-instance. For each vector ai and coordinate j where
ai[j] = 0, we introduce a vector (i, j) into our domain. Thus, we have O(nd) many vectors in
our domain. The claim is that deciding the following sentence on this new domain correctly
decides if there are k-Orthogonal vectors in A:

∃x1∃x2 . . . ∃xk∀y∃u
k∨
i=1

(u1 = xi,1 ∧ u2 = y2) .

Say the sentence is satisfied by our domain. Let the first coordinate of xi be oi. Then,
we claim that ao1 , . . . , aok

are a k-orthogonal set of vectors. By our assumption, for every
1 ≤ j ≤ d there is some vector av ∈ A with av[j] = 0. The universal quantifier ensures that
for the correspdonding vector y = (v, j), our sentence is satisfied and so, there is some object
xi of the form (oi, j). Therefore, there is a 0 in the jth coordinate of aoi . As this is true for
all 1 ≤ j ≤ d, we infer that this choice of vectors is indeed k-orthogonal.

Conversely, if there is a k-orthogonal tuple ao1 , . . . , aok
∈ A, then choose x1, . . . , xk such

that xi = (oi, ji) for each 1 ≤ i ≤ k (and an arbitrary 0-coordinate ji). Observe that for
any choice of y = (i′, j′) there is some ai with ai[j′] = 0, and thus u = (i, j′) satisfies the
condition.

26 The fine-grained complexity of multi-dimensional ordering properties

Consequently any O(nk−ε)-time algorithm for this (k+2)-quantifier sentence would give a
O(nk−εpoly(d)) algorithm for k-OV, contradicting the Moderate-dimension k-OV conjecture
and thus SETH. J

We prove our n2−o(1) lower bound for VCNDd under SETH via reduction from the low-
dimensional Orthogonal Vectors Hypothesis which is well-known to be implied by SETH
(see, e.g. [30]). This reduction is very similar to our Hitting Set reduction for ∃∀∃.

I Theorem 16. Assuming SETH, for every ε > 0, there is a d such that VCNDd requires
time Ω(n2−ε).

The result follows from the following lemma, since the low-dimension Orthogonal Vectors
Hypothesis states that for every ε, there exists some c such that OV with dimension d = c logn
cannot be solved in time O(n2−ε).

I Lemma 26. For constant c > 0 and T (n) = ω(n), if VCND4c is solvable in time O(T (n)),
then OVc log(n) is solvable in time Õ(T (n)), or

(OVc logn, T (n)) ≤FGR (VCND4c, T (n)) .

Proof. Consider an Orthogonal Vectors instance on dimension c logn vectors. Let s = logn
2 .

First, for each vector x = (x1, x2, . . . , xc logn), we will create a new vector x′ = (x′1, x′2, . . . , x′b)
where b = c logn

s = 2c and x′i is the integer given by the bits xs(i−1)+1xs(i−1)+2 . . . xsi. In
other words, we are grouping s bits of x at a time and converting them to integer values.
Lastly, we will convert each vector x′ = (x′1, x′2, . . . , x′b) to (x′1,−x′1, x′2,−x′2, . . . , x′b,−x′b).
The set of x′ vectors become X ′, and Y ′ is obtained by performing the same operation to
the vectors in Y . Lastly, we want to create a set of vectors Z that will “encode” witnesses to
non-orthogonality. Consider a vector α ∈ {0, 1}s. Let α⊥ denote the set of vectors orthogonal
to α. For each i ∈ [b], α ∈ {0, 1}s, and β ∈ {0, 1}s \ α⊥ we create vectors of the form

(∞, . . . , α
2i−1

,−α
2i
, . . . ,∞) ◦ (∞, . . . , β

2i−1
,−β

2i
, . . . ,∞) .

Here, in the vector notation, we are implicitly viewing α and β as integers specified by
the binary strings α, β. This vector has the property that it dominates some other vector
if and only if the two agree on the indices that are not ∞ in our gadget. These vectors
then form our Z set. Now, assume the Orthogonal Vectors instance indeed contained an
orthogonal pair of vectors x and y. Consider the vectors x′ ∈ X ′ and y′ ∈ Y ′. Assume for
the sake of contradiction that some vector z ∈ Z dominates x′ ◦ y′. Then, x′ ◦ y′ must have
agreed on the non-∞ entries of z. But these are exactly the entries given by some α and β,
where α and β have binary representations that are not orthogonal, which contradicts the
assumption that x is orthogonal to y. Similarly, if all of the pairs of vectors x, y were not
orthogonal, then they must have agreed with some vector in z on the non-∞ entries, so they
could not form a yes-instance of VCND.

Creating the set of X ′ and Y ′ vectors takes time linear in the number of vectors in the
OV instance. Creating the set of Z vectors takes time O(22s · b) = O(n) with our choice
of s, b. J

7 Specialized algorithms for VCNDd

Since VCNDd turned out to be the only candidate for completeness of PTOk,d, we study this
problem in more detail in this section.

H. An, M. Gurumukhani, R. Impagliazzo, M. Jaber, M. Künnemann, and M. Nina 27

First, we will present an improved algorithm for VCNDd when the dimension of one of
the sets is very small. Then, when d = O(n), we give an improved algorithm for VCNDd
using fast matrix multiplication.

I Theorem 17. There is a Õ(n2− 1
2d) time algorithm for VCND when one set of vectors is

of dimension 2 and the other is of dimension d.

Proof. We will assume the set X contains vectors of dimension d and Y contains vectors of
dimension 2. We utilize the well-known Erdös-Szekeres Theorem to preprocess the vectors in
X. There are many equivalent formualations of this theorem, but the version we will use
is as follows: In a list of n integers, there is a monotonic subsequence of size at least d

√
ne.

Consider the vectors in X restricted to their first coordinate. This is indeed a list of length
n. We compute the longest increasing subsequence on the list in order and in reverse, which
is guaranteed to return a monotonic sequence of length at least d

√
ne. We then recurse on

the list of vectors whose first coordinate is part of the monotonic subsequence, this time
considering the next dimension of these vectors. We repeat this process for the remaining set
of at most n− d

√
ne vectors. The result of this preprocessing is O(n1− 1

2d) lists each of size
O(n

1
2d) where each of the lists are monotonic in each dimension. This preprocessing takes

time O(n3/2 logn) since we can compute longest increasing subsequences in time O(n logn).
Note that each of these lists will have the property that when the vectors are viewed restricted
to some dimension, the vectors appear in either increasing or decreasing order.

For each of the O(n1− 1
2d) lists, we begin with the first vector x in the list. We can keep

multiple copies of the Z set where in each copy the list is sorted with respect to a certain
dimension. Then, we use binary search to compute the set of z ∈ Z that dominate the given
x. We can keep pointers in place at each iteration so that updating this set is fast for the
next x′ in the list. Let Lx denote the list of z ∈ Z that dominate x. The last observation
is that since the set of Y vectors is of dimension 2, we can remove vectors to make the set
Pareto optimal. Then, we can assume that the set of Y have the property that they are
in increasing order in the first dimension, and in decreasing order in the second dimension.
Therefore, for a fixed z, the set of y ∈ Y that are dominated by z form a contiguous interval.
We can compute this interval with two binary searches. Thus, for each z ∈ Lx, we add
the interval of y vectors that are dominated by z to a segment tree [19], adding 1 to each
entry occupied by an interval. We then query the min-element in the segment tree. If the
min-element is 0, then there was some y ∈ Y that was not dominated by any z ∈ Lx, in
which case we accept. Otherwise, we continue to compute Lx′ , where x′ is the next vector
in the list. Since we preprocessed the list, we can update Lx using the saved pointers to
compute Lx′ . We will perform at most n updates to Lx to compute Lx′ for any x′ in the list.

The running time of this algorithm is Õ(n2− 1
2d) since in each of the O(n1− 1

2d) lists, we
perform O(n) updates to the tree at each step. Each of the queries to the segment tree are
logarithmic in n. J

One might hope to extend this algorithm to VCND on two sets of d-dimension vectors
using a generalization of the segment tree seen here. Indeed, a multidimensional segment
tree supporting addition and min-queries in time poly-logarithmic in n would provide a truly
subquadratic algorithm for VCNDd. However, this may be too much to hope for since a
multidimensional segment tree supporting these operations would violate SETH [36, 39].

Lastly, when the dimension d = O(n), we can use a similar idea from Williams [48] to
obtain speedups using fast matrix multiplication.

I Theorem 27. When d = O(n), there is an algorithm running in time O(nω + n2d) for
VCNDd where ω is the matrix multiplication constant.

28 The fine-grained complexity of multi-dimensional ordering properties

Proof. For each x ∈ X, we create a bit vector vx where vx[i] = 1 if and only if x is
dominated by the ith vector in Z. We define vy similarly. Computing the vx and vy takes
time O(n2d). Then, create matrices A and B where the columns of A and B are the vx and
vy, respectively. Compute A>B using fast matrix multiplication, and check if any of the
entries in the resulting matrix are 0. In the resulting matrix, a 0 appears in the location
(i, j) iff the vectors at indices i and j are a witness to VCNDd J

8 Conclusion and open problems

We have introduced general classes TOk,d, PTOk,d of multidimensional ordering problems as
model-checking problems for k-quantifier first-order formulas over d succinctly represented
ordering relations (with or without additional explicitly represented relations). We gave a
conditionally tight algorithm running in time O(mk−1 logdm) for all these problems. For
PTOk,d, we gave complete or hard problems for most quantifier structures, and identified a
problem VCNDd as the essentially only candidate to be complete for PTOk,d.

The main open problem is to prove or disprove that VCNDd is complete for PTOk,d. The
major challenge here is to reduce ∃∀∃-quantified ordering problems to the ∃∃∀-quantified
VCNDd. Such a reduction is possible in the unordered setting [30], but its unclear how to
make this approach work in our setting. Likewise, can we prove that a hybrid version of
VCNDd and the orthogonal vectors problem (which is complete for the sparse-relational
setting [30]) is complete for TOk,d? An intermediate step could be to find a complete problem
for ∃∀∃-quantified ordering problems.

A further general algorithmic question is to study existence of improved algorithms for
very small constant dimensions d, such as d = 1 and d = 2, in particular the existence of
O(n2−ε(d)) time algorithms with ε(d) > 0, for 3-quantifier problems. In this direction, we
have given an O(n2− 1

2d)-time algorithm for the central VCND problem where one set of
vectors has dimension 2 and the other has dimension d. Note that by our results, such an
algorithm for the general VCNDd problem would refute the 3-uniform HyperClique conjecture.
Can we classify which problems admit such improved algorithms for small dimensions?

9 Conflict of interest

The authors are not aware of any conflict of interests.

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for

LCS and other sequence similarity measures. In Foundations of Computer Science (FOCS),
2015 IEEE 56th Annual Symposium on, pages 59–78. IEEE, 2015.

2 Amir Abboud, Karl Bringmann, Holger Dell, and Jesper Nederlof. More consequences of
falsifying SETH and the orthogonal vectors conjecture. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, pages 253–266. ACM, 2018.

3 Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. Subcubic equivalences
between graph centrality problems, apsp and diameter. In Proceedings of the twenty-sixth
annual ACM-SIAM symposium on Discrete algorithms, pages 1681–1697. SIAM, 2014.

4 Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial method
to algorithm design. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 218–230. SIAM, 2015.

5 Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang. Approximation and
fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. In Robert

H. An, M. Gurumukhani, R. Impagliazzo, M. Jaber, M. Künnemann, and M. Nina 29

Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 377–391.
SIAM, 2016.

6 Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster align-
ment of sequences. In International Colloquium on Automata, Languages, and Programming,
pages 39–51. Springer, 2014.

7 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases: the logical level.
Addison-Wesley Longman Publishing Co., Inc., 1995.

8 Pankaj K. Agarwal. Range searching. In Jacob E. Goodman, Joseph O’Rourke, and Csaba D.
Tóth, editors, Handbook of Discrete and Computational Geometry, chapter 40. CRC Press
LLC, 3rd edition, 2017.

9 Udit Agarwal and Vijaya Ramachandran. Fine-grained complexity for sparse graphs. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2018, pages 239–252, 2018.

10 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles.
Algorithmica, 17(3):209–223, 1997.

11 Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. New data structures for orthogonal
range searching. In 41st Annual Symposium on Foundations of Computer Science, FOCS
2000, 12-14 November 2000, Redondo Beach, California, USA, pages 198–207. IEEE Computer
Society, 2000.

12 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). In Proceedings of the forty-seventh annual ACM symposium on
Theory of computing, pages 51–58. ACM, 2015.

13 Arturs Backurs, Liam Roditty, Gilad Segal, Virginia Vassilevska Williams, and Nicole Wein.
Towards tight approximation bounds for graph diameter and eccentricities. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages 267–280. ACM,
2018.

14 Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly sub-
quadratic algorithms unless seth fails. In Foundations of Computer Science (FOCS), 2014
IEEE 55th Annual Symposium on, pages 661–670. IEEE, 2014.

15 Karl Bringmann, Nick Fischer, and Marvin Künnemann. A fine-grained analogue of schaefer’s
theorem in P: dichotomy of existsˆk-forall-quantified first-order graph properties. In Amir
Shpilka, editor, 34th Computational Complexity Conference, CCC 2019, July 18-20, 2019,
New Brunswick, NJ, USA, volume 137 of LIPIcs, pages 31:1–31:27. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019.

16 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Foundations of Computer Science (FOCS), 2015
IEEE 56th Annual Symposium on, pages 79–97. IEEE, 2015.

17 Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi,
and Stefan Schneider. Nondeterministic extensions of the strong exponential time hypothesis
and consequences for non-reducibility. In Madhu Sudan, editor, Proceedings of the 2016 ACM
Conference on Innovations in Theoretical Computer Science, Cambridge, MA, USA, January
14-16, 2016, pages 261–270. ACM, 2016.

18 Timothy M. Chan. Orthogonal range searching in moderate dimensions: k-d trees and range
trees strike back. Discret. Comput. Geom., 61(4):899–922, 2019.

19 Timothy M. Chan, Kasper Green Larsen, and Mihai Patrascu. Orthogonal range searching on
the ram, revisited. In Ferran Hurtado and Marc J. van Kreveld, editors, Proceedings of the
27th ACM Symposium on Computational Geometry, Paris, France, June 13-15, 2011, pages
1–10. ACM, 2011.

20 Timothy M. Chan and Dimitrios Skrepetos. All-pairs shortest paths in geometric intersection
graphs. JoCG, 10(1):27–41, 2019.

30 The fine-grained complexity of multi-dimensional ordering properties

21 Timothy M Chan and Ryan Williams. Deterministic APSP, Orthogonal Vectors, and More:
Quickly derandomizing Razborov-Smolensky. In Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1246–1255. SIAM, 2016.

22 Timothy M. Chan and Gelin Zhou. Multidimensional range selection. In Khaled M. Elbassioni
and Kazuhisa Makino, editors, Algorithms and Computation - 26th International Symposium,
ISAAC 2015, Nagoya, Japan, December 9-11, 2015, Proceedings, volume 9472 of Lecture Notes
in Computer Science, pages 83–92. Springer, 2015.

23 Bernard Chazelle. A functional approach to data structures and its use in multidimensional
searching. SIAM J. Comput., 17(3):427–462, 1988.

24 Lijie Chen and Ryan Williams. An equivalence class for orthogonal vectors. In Timothy M.
Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 21–40. SIAM,
2019.

25 Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and Tom C. van der
Zanden. A framework for eth-tight algorithms and lower bounds in geometric intersection
graphs. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles,
CA, USA, June 25-29, 2018, pages 574–586. ACM, 2018.

26 Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Cheong Schwarzkopf. Or-
thogonal Range Searching, pages 95–120. Springer Berlin Heidelberg, Berlin, Heidelberg,
2000.

27 Anka Gajentaan and Mark H Overmars. On a class of o(n2) problems in computational
geometry. Computational geometry, 5(3):165–185, 1995.

28 Jiawei Gao. On the fine-grained complexity of least weight subsequence in multitrees and
bounded treewidth dags. In Bart M. P. Jansen and Jan Arne Telle, editors, 14th International
Symposium on Parameterized and Exact Computation, IPEC 2019, September 11-13, 2019,
Munich, Germany, volume 148 of LIPIcs, pages 16:1–16:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019.

29 Jiawei Gao and Russell Impagliazzo. The fine-grained complexity of strengthenings of first-
order logic. Electronic Colloquium on Computational Complexity (ECCC), 26:9, 2019. URL:
https://eccc.weizmann.ac.il/report/2019/009.

30 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. Completeness for
first-order properties on sparse structures with algorithmic applications. In Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’17, pages
2162–2181, 2017.

31 Neil Immerman. Descriptive complexity. Graduate texts in computer science. Springer, 1999.
32 Russell Impagliazzo, Shachar Lovett, Ramamohan Paturi, and Stefan Schneider. 0-1 integer

linear programming with a linear number of constraints. CoRR, abs/1401.5512, 2014. URL:
http://arxiv.org/abs/1401.5512, arXiv:1401.5512.

33 Russell Impagliazzo, Ramamohan Paturi, and Stefan Schneider. A satisfiability algorithm for
sparse depth-2 threshold circuits. CoRR, abs/1212.4548, 2012. URL: http://arxiv.org/abs/
1212.4548, arXiv:1212.4548.

34 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? In Foundations of Computer Science, 1998. Proceedings. 39th Annual
Symposium on, pages 653–662. IEEE, 1998.

35 Joseph F. JáJá, Christian Worm Mortensen, and Qingmin Shi. Space-efficient and fast
algorithms for multidimensional dominance reporting and counting. In Rudolf Fleischer
and Gerhard Trippen, editors, Algorithms and Computation, 15th International Symposium,
ISAAC 2004, Hong Kong, China, December 20-22, 2004, Proceedings, volume 3341 of Lecture
Notes in Computer Science, pages 558–568. Springer, 2004.

36 Tuukka Korhonen. On multidimensional range queries. https://laakeri.kapsi.fi/a/rmq.pdf,
2019. Accessed: 2021-06-27.

https://eccc.weizmann.ac.il/report/2019/009
http://arxiv.org/abs/1401.5512
http://arxiv.org/abs/1401.5512
http://arxiv.org/abs/1212.4548
http://arxiv.org/abs/1212.4548
http://arxiv.org/abs/1212.4548

H. An, M. Gurumukhani, R. Impagliazzo, M. Jaber, M. Künnemann, and M. Nina 31

37 Marvin Künnemann and Dániel Marx. Finding small satisfying assignments faster than brute
force: A fine-grained perspective into boolean constraint satisfaction. In Shubhangi Saraf,
editor, 35th Computational Complexity Conference, CCC 2020, July 28-31, 2020, Saarbrücken,
Germany (Virtual Conference), volume 169 of LIPIcs, pages 27:1–27:28. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

38 Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the Fine-Grained Com-
plexity of One-Dimensional Dynamic Programming. In 44th International Colloquium on
Automata, Languages, and Programming (ICALP 2017), volume 80 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 21:1–21:15, 2017.

39 Joshua Lau and Angus Ritossa. Algorithms and hardness for multidimensional range updates
and queries. In James R. Lee, editor, 12th Innovations in Theoretical Computer Science
Conference, ITCS 2021, January 6-8, 2021, Virtual Conference, volume 185 of LIPIcs, pages
35:1–35:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

40 Andrea Lincoln, Virginia Vassilevska Williams, and Ryan Williams. Tight hardness for shortest
cycles and paths in sparse graphs. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1236–1252. Society for Industrial and Applied
Mathematics, 2018.

41 George S. Lueker. A data structure for orthogonal range queries. In 19th Annual Symposium
on Foundations of Computer Science, Ann Arbor, Michigan, USA, 16-18 October 1978, pages
28–34. IEEE Computer Society, 1978.

42 Dániel Marx and Anastasios Sidiropoulos. The limited blessing of low dimensionality: when
1-1/d is the best possible exponent for d-dimensional geometric problems. In Siu-Wing Cheng
and Olivier Devillers, editors, 30th Annual Symposium on Computational Geometry, SOCG’14,
Kyoto, Japan, June 08 - 11, 2014, page 67. ACM, 2014.

43 Daniel Moeller, Ramamohan Paturi, and Stefan Schneider. Subquadratic algorithms for
succinct stable matching. In International Computer Science Symposium in Russia, pages
294–308. Springer, 2016.

44 Yakov Nekrich. Orthogonal range searching in linear and almost-linear space. Comput. Geom.,
42(4):342–351, 2009.

45 Mihai Patrascu and Ryan Williams. On the possibility of faster SAT algorithms. In SODA,
volume 10, pages 1065–1075. SIAM, 2010.

46 D.E. Willard. Predicate-oriented Database Search Algorithms. Center for Research in Comput-
ing Technology: Center for Research in Computing Technology. Garland Pub., 1979. URL:
https://books.google.de/books?id=iLQmAAAAMAAJ.

47 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005.

48 Ryan Williams. Faster decision of first-order graph properties. In Proceedings of the Joint
Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL)
and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
page 80. ACM, 2014.

49 Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path, matrix
and triangle problems. In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE
Symposium on, pages 645–654. IEEE, 2010.

50 Virginia Vassilevska Williams and Ryan Williams. Finding, minimizing, and counting weighted
subgraphs. SIAM J. Comput., 42(3):831–854, 2013.

https://books.google.de/books?id=iLQmAAAAMAAJ

	1 Introduction
	1.1 A class of geometric ordering problems: PTOk,d
	1.2 Our results
	1.3 Previous work

	2 Preliminaries
	2.1 Details on PTOk,d and TOk,d
	2.2 Conjectures from fine-grained complexity
	2.3 The VCND problem
	2.4 Relationships to other classes

	3 Technical overview
	3.1 Quantifier structures ending in
	3.2 Quantifier structures ending in
	3.3 Quantifier structures ending in
	3.4 Quantifier structures ending in

	4 Baseline algorithms
	5 Completeness for quantifier structures
	5.1 Quantifier structures reducing to triangle problems
	5.1.1 PTO
	5.1.2 TO
	5.1.3 TO

	5.2 Nondeterministic complexity of TO
	5.3 Quantifier structure

	6 Hardness results
	7 Specialized algorithms for VCNDd
	8 Conclusion and open problems
	9 Conflict of interest

